|
|||
Производная показательной функцииСтр 1 из 2Следующая ⇒ Производная показательной функции Нарисуем несколько графиков функции для а, равного 2; 2,3; 3; 3,4 и проведём к ним касательные в точке с абсциссой 0. Углы наклона этих касательных к оси абсцисс приблизительно равны 350, 400, 480 и 510 соответственно, т. е. с возрастанием а угловой коэффициент касательной к графику функции в точке М(0; 1) постепенно увеличивается от tg350 до tg510. Увеличивая а от 2 до 3, мы найдём такое значение а, при котором угловой коэффициент соответствующей касательной равен 1 (т. е. угол наклона равен 450). Существует такое число большее 2 и меньшее 3 (это число обозначается буквой е), что показательная функция в точке 0 имеет производную, равную 1. е = 2,718281… Функцию называют экспонентой. Теорема 1. Функция дифференцируема в каждой точке области определения, и . Пример 1.Найти производную функции . . Натуральным логарифмом (обозначается ln) называется логарифм по основанию е: . По основному логарифмическому тождеству, для любого положительного числа . Поэтому может быть записано в виде . Теорема 2. Показательная функция дифференцируема в каждой точке области определения, и . Пример 2.Найти производные функций и . Решение. ; . Пример 3.Найти производную функции .
|
|||
|