|
|||
Сложное движение.Сложное движение. В физике, при рассмотрении нескольких систем отсчёта (СО) возникает понятие сложного движения — когда материальная точка движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух системах отсчета (далее СО). Геометрия задачи Обычно выбирают одну из СО за базовую («абсолютную», «лабораторную», «неподвижную», "СО неподвижного наблюдателя, «первую», «нештрихованную» и т. п.), другую называют «подвижной» («СО подвижного наблюдателя», «штрихованную» «вторую» и т. п.) и вводят следующие термины: § абсолютное движение — это движение точки/тела в базовой СО. § относительное движение — это движение точки/тела относительно подвижной системы отсчёта. § переносное движение — это движение подвижной системы отсчета относительно базовой системы отсчета. [2] Также вводятся понятия соответствующих скоростей и ускорений. Например, переносная скорость — это скорость точки, обусловленная движением подвижной системы отсчёта относительно абсолютной. Другими словами, это скорость точки подвижной системы отсчёта, в данный момент времени совпадающей с материальной точкой. С точки зрения только чистой кинематики (задачи пересчета кинематических величин — координат, скоростей, ускорений — от одной системы отсчета к другой), являющейся в сущности предметом просто математического анализа, не имеет значения, является ли какая-то из систем отсчета инерциальной или нет; это никак не сказывается на формулах преобразования кинематических величин при переходе от одной системы отсчета к другой (то есть эти формулы можно применять и для перехода от одной произвольной неинерциальной вращающейся системы отсчета к другой). Однако для динамики инерциальные системы отсчета (или, для практики, системы отсчета, которые можно в достаточно хорошем приближении считать инерциальными) имеют выделенное значение: в них динамические уравнения имеют гораздо более простую запись и обычно (именно поэтому) формулируются изначально именно для инерциальных систем отсчета. Поэтому особенно важны случаи перехода от инерциальной системы отсчета к другой инерциальной, а также от инерциальной к неинерциальной и обратно; последнее позволяет кроме прочего получить при желании и динамические уравнения в виде, верном для неинерциальной системы отсчета, исходя из их простой (изначальной) формулировки, сделанной для инерциальных систем отсчета. В дальнейшем изложении, по умолчанию, для тех случаев, когда это существенно, базовая СО предполагается инерциальной, а на подвижную никаких ограничений не накладывается.
|
|||
|