|
|||
Орбитальные станции 3 страницаВсе это означало, что исчезла возможность по сигналам станционных радиосредств контролировать положение станции на орбите, понимать характер ее движения вокруг центра масс (а вдруг она раскрутится, например, за счет утечки газа), включать аппаратуру и двигатели ориентации, обеспечивающие совместно с автоматикой транспортного корабля определение относительных параметров движения станции и корабля и их взаимную ориентацию. А следовательно, мы не могли использовать хорошо освоенный метод автоматического сближения транспортного корабля со станцией, не могли контролировать работу и состояние бортовых систем. Ясно было, что для восстановления нормальной работы необходимо разработать новый метод выведения транспортного корабля к молчавшей станции (как к «некооперируемому» объекту, то есть к объекту, который знать не знает, что к нему хотят подойти, и тем более ничего не делает, чтобы этому процессу помочь). Надо подготовить корабль и экипаж к полету на станцию и к выполнению необычной задачи — оснастить корабль новым оборудованием, необходимым для такой операции. На решение этих проблем ушли весенние месяцы 1985 года. Для определения положения станции на орбите решили использовать наземные средства наблюдения службы контроля космического пространства, которые позволяли производить достаточно точные измерения, необходимые для расчета и прогнозирования движения станции, и впоследствии вывести пилотируемый корабль в район станции. По наземным наблюдениям удалось установить, что раскрутки станции не происходит. Это было важно: к быстро вращающейся станции не подойдешь и не состыкуешься, так как стыковочный узел находится далеко от центра масс. Была разработана следующая технология сближения: с расстояния примерно 10 километров экипаж с помощью оптического прибора должен был навести одну из осей корабля на станцию, которая над освещенной стороной Земли должна наблюдаться на фоне черного неба как необычно яркая звезда, если, конечно, к станции приближаться со стороны Земли, и ввести в бортовую вычислительную машину сигнал о том, что в данный момент выбранная ось корабля «смотрит» на станцию. Несколько таких засечек, введенных в память бортовой вычислительной машины, которая в каждый момент знает фактическое положение корабля в неподвижной системе координат, позволяла ей получить информацию о фактической траектории движения корабля вблизи станции, выполнить необходимые расчеты и дать команду по коррекции этой траектории для подведения корабля к станции. Вблизи станции (на расстоянии 2–3 километра), если сближение пройдет нормально, экипаж должен был взять управление на себя, приблизиться к станции, облететь ее для подхода со стороны переходного отсека и причалить. Для проведения этих операций, помимо математических алгоритмов расчетов и операций, введенных в память бортовой вычислительной машины, был собран специальный комплекс приборов, в который входили: оптический прибор наведения, лазерный дальномер, прибор ночного видения (на случай, если не удастся причалить к станции до ее захода в тень и придется зависнуть, то есть, включая координатные двигатели корабля то на подвод к станции, то на отвод, удерживаться на выбранном расстоянии от станции, чтобы не потерять ее из виду или не врезаться в нее, находясь в тени). С марта начали готовить корабль. Разработали методики, схемы и программы деятельности экипажа и центра управления (особенно службы расчета и прогнозирования орбит и взаимодействия ее с наземными средствами, следившими за станцией) при выполнении сближения, облета и причаливания корабля к станции. Провели специальные тренировки экипажа на различных стендах, подготовку к работе с новым для него приборным оборудованием, тренировки персонала центра управления и персонала наземных пунктов наблюдения, управления и связи. Разработали и схемы действий экипажа после стыковки корабля со станцией. Можно было приступать к реанимации. 6 июня корабль «Союз-Т-13», пилотируемый Владимиром Джанибековым и Виктором Савиных, был выведен на орбиту, прошел обычные тесты, подтвердившие его нормальную работоспособность после выведения. Были выполнены операции коррекции орбиты корабля, и утром 8 июня корабль подошел к станции. Когда станция и корабль вышли из тени, они оказались на расстоянии около 10 километров друг от друга. Командир ориентировал «боковую» ось корабля на станцию, наблюдая за ней через иллюминатор спускаемого аппарата, а бортинженер по его командам вводил информацию в вычислительную машину. Далее автоматика выполнила последний маневр коррекции, и с расстояния порядка 2,5 километров экипаж взял управление процессом движения на себя. Впрочем, расчеты бортовой машины были достаточно качественны, корректировать траекторию подхода пришлось незначительно. На расстоянии около 200 метров экипажем было выполнено зависание корабля — он перестал приближаться к станции, держась от нее на выбранном расстоянии. Экипаж оценил условия освещения, при которых придется подходить к станции (они оказались не очень благоприятными), посоветовался с центром управления, получил его разрешение и приступил к причаливанию. Джанибеков подвел корабль поближе, облетел станцию, вывел корабль к переходному отсеку и пристыковался. Это была прекрасно выполненная операция и крупное техническое достижение — удалось сблизиться и состыковаться с некооперированным объектом. И экипаж, и все, кто участвовал в подготовке и проведении этого полета, были счастливы. В центре управления полетом начались обычные поздравления, рукопожатия и т. п. Но на фоне ясного неба безоговорочной победы появилось облачко. Его сначала в ЦУПе почти никто и не заметил. Только несколько человек обратили внимание. Мы видели на телевизионном изображении, передаваемом с борта корабля, что две соосные панели солнечных батарей не параллельны, а развернуты относительно друг друга примерно на 70–90 градусов. Это означало, что как минимум не работает система ориентации солнечных батарей, а может, это признак отсутствия напряжения в системе энергопитания. Со временем тучи начали сгущаться. После стыковки электрических разъемов станции и корабля, по идее, можно было проверить несколько параметров станции, контроль за которыми необходим в процессе проверки герметичности стыка и перехода из корабля на станцию. Подключение этих датчиков станции к системе отображения на корабле осуществляется через состыкованные электрические разъемы. Убедились: датчики не подключились к схеме корабля. Тоже признак того, что не работает система электропитания станции (СЭП). Это породило много проблем: если не работает СЭП, то станция и все в ней должно замерзнуть: вода, пища, приборы, агрегаты, механизмы. Все рассчитано на работу при положительной температуре, значит, не работает система обеспечения и контроля газового состава, а следовательно, не ясно, можно ли находиться внутри станции экипажу. А какой там газовый состав? Ведь неисправность в радиосредствах могла объясняться и пожаром, и, может быть, нужно использовать противогазы, захваченные с собой на всякий случай. Члены экипажа выполнили работы по проверке герметичности стыка станции и корабля вручную (ведь электрические команды на станцию не проходили), вскрыли пробку в стыковочном узле станции, уравняли давление между кораблем и станцией, открыли люк и вошли в переходной отсек. Перед переходом в рабочий отсек космонавты провели вскрытие клапана, предназначенного для забора проб воздуха, проверили газовый состав атмосферы в станции: нет ли следов пожара, опасных токсических примесей в атмосфере отсека. Экипаж корабля был вооружен приборами для проверки воздуха на наличие опасных газовых примесей. Затем открыли люк: атмосфера нормальная, но холодно. Насколько? Попробовать стенку? Руководитель полета Рюмин в шутку посоветовал Джанибекову: «Да плюнь ты на нее!» Экипаж доложил: проба на слюну указывает, что температура ниже нуля. Слюна на металле замерзла примерно за три секунды. Еще в переходном отсеке Джанибеков проверил напряжение на одной из розеток: равно нулю. Оправдывались самые худшие предположения. Но все-таки попробовали в рабочем отсеке выдавать команды с пультов — не проходят. Датчики емкостей показывали в основных батареях — ноль, в резервной батарее — нормальная емкость. Но такого не может быть! Если основные батареи полностью разряжены, то в процессе их разрядки и соответствующего падения напряжения автоматика должна была подключить к шинам электропитания резервную батарею, которая также должна была разрядиться. Может, неисправность, и автоматика не сработала? Ведь бывает же иногда везение и в неисправностях! Но нет. Проверили еще раз. Напряжение резервной батареи — ноль. Действительно, неисправность — но неисправность датчика емкости батареи: когда разряжалась основная батарея, то по назначенной заранее величине минимального напряжения автоматика системы управления бортовым комплексом отключила большинство потребителей, оставив только минимально необходимые: программно-временное устройство, систему терморегулирования и т. п. Питание этих оставшихся приборов было настолько малым, что индикатор датчика контроля емкости резервной батареи, который контролирует разрядный ток, не сдвинулся с места. Все правильно — удачной неисправности не было. Что же произошло? В каком состоянии станция? Как в ней работать — ведь без очистки атмосферы (а систему регенерации включить невозможно — нет напряжения) при пребывании экипажа внутри станции примерно за сутки концентрация углекислого газа возрастет до опасного для жизни уровня. А работать надо — иначе не понять, что произошло и что делать дальше. Значит, надо непосредственно из корабля по изготовленному на борту кабелю подавать питание на один из регенераторов станции. Вопросы множились и перед экипажем, и, соответственно, перед инженерами на земле. Прежде всего необходимо было наладить работу системы энергопитания. Но возможно ли это в принципе? Ведь еще до старта «Союза-Т-13» специалисты СЭП категорически утверждали: если система энергопитания вышла из строя и батареи разряжены, восстановить ее работоспособность невозможно. Необходимо было найти выход. Судя по тому, что даже при освещении солнечных батарей на шинах СЭП напряжение не появлялось, солнечные батареи были отключены от буферных батарей. Так сформировалась первая задача: подключить солнечные батареи к шинам СЭП, что требовало подачи напряжения с электросхемы корабля на обмотку автоматического дистанционного переключателя. Но при этом могла появиться опасность, связанная с тем, что в электрических цепях станции окажется неисправность, которая выведет из строя систему электропитания корабля, и возвращение космонавтов на Землю окажется невозможным. И все-таки нашли выход и реализовали процедуру восстановления СЭП, хотя и довольно сложную. Сначала решили зарядить одну из химических батарей. По схемам и инструкциям, переданным с Земли, экипаж изготовил кабели, разобрал схему подключения солнечных батарей к шинам СЭП и подключил одну из батарей напрямик к солнечным батареям. Станцию за счет работы системы управления корабля и его управляющих реактивных двигателей ориентировали таким образом, чтобы подключенные солнечные батареи были освещены. Через несколько часов первый блок был слабо заряжен. Его подключили к шинам СЭП. После чего оказалось возможным проверить состояние станции с пультов и по телеметрическим измерениям, переданным на Землю. После просмотра телеметрии выяснилось, что проблем оказалось больше: не только проблема энергопитания должна была беспокоить нас — температуры элементов конструкции были близки к нулю и даже ниже. Это означало, что нельзя использовать управляющие реактивные двигатели и что вода на станции замерзла. Уже на второй день экипаж пытался включать систему водоснабжения. Разогреть ее не представлялось возможным за короткое время. Запас воды на корабле был на восемь суток, то есть должен был закончиться 14 июня. И даже если использовать, предварительно отогрев в корабле, две имевшихся на станции небольших переносных емкости с замерзшей водой, ограничить норму потребления воды для экипажа, использовать воду из неприкосновенного аварийного запаса корабля, то ее должно было хватить только до 21–24 июня. Решили срочно подготовить к запуску грузовой автоматический корабль, главной задачей которого стала доставка воды на станцию. Надо было в кратчайшие сроки испытать, заправить и подготовить к запуску корабль и ракету-носитель. Все это было сделано, и на рассвете 23 июня «Прогресс-24» пристыковался к станции. Но процесс разогрева начался раньше. После заряда первой батареи в том же порядке зарядили и остальные. В процессе работы с ними выяснили причины выхода из строя СЭП: в одной из батарей оказался неисправным датчик, указывающий на полный заряд батареи. По сигналу этого датчика солнечные батареи отключаются от заряда буферных химических батарей. В создавшейся ситуации датчик выдавал команду на отключение от схемы заряда батарей. По командам программно-временного устройства один раз за виток подавалась команда на подключение солнечных батарей, но тот же неисправный датчик их отключал. Химические батареи, оставшись один на один с потребителями, постепенно разрядились. Вся аппаратура станции перестала работать: не было напряжения в сети. Аппаратура не работала, и тепло не выделялось. Станция стала замерзать. Этого бы не произошло, если бы на станции находился экипаж или если бы не прекратилась связь с Землей — неисправный датчик можно было бы отключить. В процессе восстановления работоспособности станции, после заряда буферных батарей, космонавты исправили электрическую схему, заработали системы энергопитания, ориентации солнечных батарей, терморегулирования и телеметрии. Экипаж установил исправную аппаратуру командной радиолинии, появился свет, тепло, и 16 июня пошла вода — начал таять лед в системе водоснабжения. Кризис миновал. При разогреве требовалась определенная осторожность: дело в том, что в процессе охлаждения станции влага атмосферы должна была осесть и затем замерзнуть на стенках. Поэтому контур подогрева корпуса системы терморегулирования нельзя было включать сразу — влага испаряясь со стенок, могла оседать на холодных приборах, электрических разъемах, что привело бы к нарушениям в их работе. Поэтому сначала прогрели атмосферу, приборы и только потом включили контур подогрева корпуса. Уже 13 июня был проведен тест на готовность системы ориентации, аппаратуры сближения и двигательной установки. Если бы они не работали, то нельзя было бы заправить транспортный корабль. Поскольку он был старого образца, то мог подойти к станции только при работе в автоматическом режиме совместно с автоматикой станции. В этом случае экипажу пришлось бы возвращаться, прервав экспедицию. Тест прошел нормально — были отданы команды на заправку и старт корабля «Прогресс». Конечно, аппаратура станции подверглась тяжелому испытанию. Поэтому после восстановления СЭП пришлось провести испытания и всех остальных систем. Все эти работы были выполнены. Работа на станции вошла в нормальную колею. Но полного доверия к станции, прошедшей этап клинической смерти, уже не было. И действительно, стали появляться отказы в отдельных приборах. Летом 1986 года станция «Салют-7» была переведена в режим консервации, так как уже начала работать новая станция — «Мир». Однако в деле получения сколько-нибудь заметных положительных результатов на станциях «Салют» мы практически не продвинулись вперед. Фактически продолжали работать сами на себя. Установленные на станциях телескопы (инфракрасный, радио, рентгеновский), оборудование для экспериментов по получению сверхчистых материалов либо совсем не работали, либо оказались неэффективными. Почему? Может быть, мы слишком поздно заказывали оборудование для исследований и экспериментов и разработчики не успевали создавать качественную и надежную аппаратуру? Или главной причиной было отсутствие надежной инженерной базы разработки и создания аппаратуры и оборудования для исследовательских целей? А что если попытаться обойти эти проблемы? Создать такую станцию, чтобы стало возможным в процессе полета кардинально менять инструменты и саму программу исследований? Одним словом, раскинуть сеть пошире. Такова и была основная идея станции «Мир». По замыслу ее базовый блок должен был походить на последние станции «Салют», но иметь шесть стыковочных узлов, два из которых должны были устанавливаться, как обычно, вдоль продольной оси, а четыре — на переходном отсеке, перпендикулярно продольной оси. Такая конфигурация позволяла присоединять к станции не только пилотируемые и грузовые корабли (вдоль продольной оси), но и до четырех модулей для проведения исследовательских и экспериментальных работ. Первоначальным проектом предусматривалось, что эти модули будут разрабатываться и изготовляться нашим предприятием на базе грузовых кораблей «Прогресс». Стоимость таких модулей могла быть около 10–20 миллионов рублей (тогда один рубль на нашем внутреннем рынке примерно соответствовал одному доллару на американском), вместо 200–400 миллионов за станции типа «Салют». Так что сама станция могла стоить 250–450 миллионов долларов. Был выпущен проект. Началась разработка чертежей и другой технической документации. Но скоро дело застопорилось. Так и осталось не ясно, откуда исходила инициатива. От работников КБ «Салют» или прямо от нашего министра Афанасьева. Новое предложение состояло в том, чтобы модули для исследовательской и экспериментальной аппаратуры станции «Мир» делать не на базе «Прогресса» (с массой каждого около 7 тонн), а на базе ТКС (транспортных кораблей снабжения), разработанных ранее для станции «Алмаз», целая серия которых якобы уже была изготовлена, и министерство не знало, куда их списать, так как работы по «Алмазу» были прекращены. Масса каждого из этих модулей около 20 тонн (в три раза больше!) и стоимость после доработки конструкции порядка ста миллионов рублей (практически — существенно больше). Сражение кончилось не в нашу пользу. Сторонником этого варианта оказались не только КБ «Салют», но и завод имени Хруничева, и его тогдашний директор — ставленник министра Афанасьева, и конструкторские отделы нашего КБ, и наш завод, от которых то же министерство и руководство КБ требовали, чтобы они сосредоточились на совершенно бессмысленной работе над «Бураном», являвшимся подражанием «Шаттлу». И наконец наш тогдашний Генеральный. Начальство использовало вроде бы логичные доводы: ТКС уже почти готовы, их навалом (но это оказалось обманом, хотя министр мог об этом и не знать), общую массу исследовательской аппаратуры можно увеличить до 40 тонн, вместо 7–9 тонн по нашему варианту. Они выиграли сражение, и это, конечно, снижало шансы на успех нашей новой разработки. Общая стоимость самой станции с модулями выросла в два-три раза — до 600–800 миллионов долларов, а возможность замены неэффективных, не оправдавших себя модулей другими практически исчезла. Базовый модуль новой станции «Мир» был запущен на орбиту в феврале 1986 года (опять же к съезду КПСС!). Первый модуль «Квант» был пристыкован к базовому блоку станции только в 1987 году. Вообще-то этот модуль предназначался для станции «Салют-7» и поэтому был сделан с двумя стыковочными узлами, с тем чтобы его можно было состыковать со стороны агрегатного отсека базового блока и чтобы после стыковки сохранялась возможность причаливания к нему грузового или пилотируемого корабля. Это должно было обеспечить возможность прихода на комплекс, состоящий из базового блока и модуля «Квант», двух кораблей. Но поскольку к 1986 году уже появились сомнения в работоспособности «Салюта-7», решили переадресовать модуль «Квант» на станцию «Мир». Комплектация «Мира» модулями растянулась на много лет. 1989 год — «Квант-2», 1990 год — модуль «Кристалл», 1995 год — модуль «Спектр», 1996 год — модуль «Природа». Увеличение возможностей для установки экспериментального оборудования и исследовательской аппаратуры не привело к успеху. И исследовательская, и экспериментальная аппаратура, и оборудование, как правило, были ненадежными и неэффективными. Время работы конкретного прибора, телескопа, экспериментальной аппаратуры, соотнесенное со временем полета, оказалось ничтожным. И функции членов экипажа на исследовательской станции сводились к функциям техников-диспетчеров или ремонтников. Станция была сделана неправильно. Продолжая раскидывать сети пошире, мы не добились успеха в продвижении вперед. Можно сказать, опять потерпели неудачу в решении проблемы эффективного и оправданного участия человека в работах непосредственно на орбите. В двухтысячном году разгорелось много споров о допустимости спуска и целесообразности прекращения работ на станции «Мир». По моему, спуск «Мира», конечно, не повод для радости, но и не повод для стенаний. Что касается того, допустим ли сам спуск на землю такой громадной конструкции, не представляет ли он опасности для жителей района падения несгоревших остатков станции, то ответ на этот вопрос достаточно прост. Во-первых, уже имеется опыт спуска больших конструкций с орбиты на поверхность Земли: — регулярно спускались на поверхность Тихого океана водородно-кислородные баки системы «Спейс-Шаттл»; — спускались с орбиты без каких либо вредных последствий все станции «Салют»; — если для спуска «Мира» выбрать район в Тихом океане и предупредить заранее плавающие там суда, то практически никакой опасности там не возникнет. Это и подтвердилось при спуске «Мира». Решение о прекращении работ на этой станции было правильным. Мы получили от станции «Мир» все, что можно было получить. Некоторые журналисты и так называемые политические деятели утверждали, что на станции «Мир» ведутся некие работы, имеющие значение для Министерства обороны, которые недопустимо прекращать. Мне о таких работах неизвестно. А если военные там и ставили какие-то эксперименты, то почему же они молчали? Думаю, что за этими выступлениями стояли чисто корыстные интересы некоторых руководителей «прихватизировавших» основные предприятия, изготавливавшие корабли «Союз» и «Прогресс». Задавался вопрос, а не потерпел ли ущерба престиж нашей страны как космической державы? Шумели много. Как только кто-то начинает говорить о престиже страны, сразу приходит в голову мысль: опять нас пытаются обмануть! Престиж страны высок тогда, когда ее граждане свободны, защищены от воров и бандитов, когда они могут найти работу и обеспечить жизнь своей семьи и свою на приемлемом уровне. Бутафория престижа великой космической державы, в которую давно никто не верит, нам не нужна, тем более, когда эта бутафория оплачивается за счет нищих и голодных. Другое дело, если бы руководители работ по станции «Мир» своевременно (где-то в середине 1990-х) заинтересовали США, Европу, Японию, Канаду, Китай (всех вместе или только некоторых) эксплуатировать за умеренную арендную плату нашу станцию, работать на ней и набирать свой собственный опыт работ на орбитальных станциях. Они смогли бы это сделать, если бы внятно потенциальным арендаторам объяснили, что они получат тот же опыт, который получат при работах по станции МКС, но при этом сэкономят многие десятки миллиардов долларов (а может быть, и значительно больше), так как им в этом варианте пришлось бы платить нам только за полеты одного или максимум двух наших космонавтов и нескольких кораблей «Союз» и «Прогресс» в год. Но они этого не сделали и тем самым отняли работу у сотрудников собственных предприятий. И потеряли от спуска станции «Мир» США и их союзники по МКС, в том числе и наша страна, поскольку мы тоже участвуем в этих работах. Тут возникает вопрос: а ратифицированы ли официально нашей страной кем-то подписанные соглашения по участию в работах по МКС? А если не ратифицированы, то это обстоятельство можно было бы использовать, чтобы сократить ненужные расходы. Что же касается самой МКС и возможности с ее помощью заметного продвижения в области оправданного участия людей в работах на орбите, то складывается впечатление, что такой задачи разработчики МКС перед собой и не ставили. Опять восстановление престижа США в области орбитальных станций? Получение опыта? В чем же дело? Почему мы потерпели неудачу в работах по станции «Мир»? Тут имеют решающее значение три вещи. Во-первых, надо как можно четче уяснить, что же мы хотим сделать на данной орбитальной станции. Во-вторых, определить главную функцию человека, которую он будет осуществлять на орбите и которая оправдывала бы его пребывание на станции. И в-третьих, оснастить станцию наиболее эффективными инструментами для исследований и экспериментов. Начнем с последнего тезиса. Когда мы работали над очередным проектом, то попытались напрямую договориться с представителями Института Макса Планка в Германии об установке на нашей станции рентгеновского телескопа с зеркалом косого падения с диаметром объектива около 600 миллиметров, разработка которого в то время у них уже далеко продвинулась. Ничего не вышло: нам нанесли удар в спину разработчики рентгеновского телескопа из нашего Института космических исследований. Их представители встретились, кажется, на какой-то конференции в Австрии с разработчиком из Института Макса Планка и упросили его отказаться от переговоров с нами: «Если вы согласитесь поставить ваш телескоп на станцию, телескоп ИКИ не будет поставлен. Имейте совесть!» Дело кончилось как обычно: рентгеновский телескоп ИКИ в полете не работал, а рентгеновский телескоп с зеркалом косого падения (с увеличенным диаметром, кстати, разработанный в том же институте) был выведен на орбиту только в 1999 году на «Шаттле». Никаких компромиссов в деле оснащения станции наиболее эффективными инструментами быть не должно! Но предположим, нам удалось бы оснастить станцию хорошими, эффективными инструментами. Добились бы мы успеха? Пожалуй, все равно нет. Дело в упоминавшемся уже временном коэффициенте полезного действия работы аппаратуры и человека. А что может делать на станции человек? Приступая к разработке космических кораблей, мы исходили из того, что, создавая их, пролагаем путь человечеству в новый мир необъятных размеров, который ему еще только предстоит осваивать, который предоставит людям новые возможности. Какие возможности появятся для работы человека в этом новом мире, тогда было не ясно. Но они должны были быть. В какой-то степени это подтвердилось в дальнейшем. Правда, возникал вопрос: а сможет ли человек воспользоваться этими возможностями, находясь и работая непосредственно в космическом пространстве? Сможет ли он жить и работать в условиях невесомости, в условиях орбитального или межпланетных полетов? В условиях космического полета радиация является вполне реальной опасностью, если корабль находится на высоте более 400 километров, за радиационными поясами. Источник опасности — высокая концентрация протонов и электронов в радиационных поясах на высотах от 400 до примерно 20 000 километров, вспышки на Солнце, при которых в сторону Земли летят облака электронов, и частицы высоких энергий в галактическом космическом излучении — эта опасность может возникнуть только при осуществлении межпланетных полетов. Если проходить радиационные пояса с космическими скоростями, как это было у американцев во время полетов к Луне, то за счет краткости пребывания корабля в радиационных поясах опасности нет. Конечно, крайне нежелателен пробой стенки микрометеорами, но серьезной опасности он не представляет. Заметной опасностью является встреча с частицей, способной пробить стенку корабля. При этом диаметр отверстия будет примерно равен толщине стенки и, несмотря на большую скорость истечения воздуха из внутреннего объема станции, давление в ней начнет падать очень медленно, и можно спокойно принять меры по спасению. Другое дело — встреча с каким-нибудь крупным предметом, оставшимся на орбите от ракет или аппаратов. Вероятность столкновения с такими предметами сейчас пока очень небольшая и не выходит за пределы допустимого профессионального риска. Но необходимо все-таки заключить международное соглашение, запрещающее оставлять на земных орбитах на длительное время элементы конструкции ракет и аппаратов, которые, постепенно накапливаясь, могут стать вполне реальной опасностью для полетов. Проблема снижения содержания кальция в костной ткани и, соответственно, уменьшение ее плотности во время пребывания в невесомости, ослабление мощности сердечной мышцы из-за заметного снижения нагрузки на нее в условиях невесомости, вредные газовые примеси в атмосфере орбитальных станций, высокое нервное напряжение в течение длительного времени — вполне реальные опасности пребывания человека в космических полетах. Они прогнозировались и подтверждались. Для этого всегда принимались профилактические меры: регулярные физические нагрузки на бегущей дорожке, велоэргометре, газовые фильтры, дни отдыха и разгрузки и тому подобное. Похоже, что существует и другая опасность, связанная с выполнением длительных полетов. Она проявляется в явном нежелании уже летавших космонавтов участвовать в полетах большой длительности (полгода, год и более). Почему? Пока мы этого не поняли, но надо постараться понять и принять меры. Ну и конечно, всегда в полете существует вполне реальная опасность аварии на участке выведения на орбиту, при сближении и стыковке со станцией, во время работы на орбите и при возвращении на Землю. Такие опасности, как вакуум, радиация и метеоры были более или менее осознаваемы, мы понимали, что эти препятствия преодолеть можно инженерными методами. Но сможет ли человеческий организм адаптироваться к условиям невесомости? Априорная убежденность в том, что человек может жить и работать при отсутствии силы тяжести, плавая внутри объемов кораблей и станций, была. Она принималась как религиозные представления. Но на самом деле эта убежденность базировалась только на одном, совершенно не убедительном доводе: если человек не сможет жить в условиях невесомости, то зачем нам за это дело браться? Что такое соображение не является доказательством, было очевидно, и потому с самого начала нужно было разобраться в возможности человека жить и работать в невесомости, попытаться определить, нет ли здесь каких-нибудь подводных камней, нет ли каких-то ограничений, касающихся, например, длительности полета, возраста, состояния здоровья. И мы постепенно наращивали длительность полета, не провозглашая эту задачу одной из важнейших целей. Длительность непрерывного полета на кораблях и орбитальных станциях была постепенно доведена до четырехсот с лишним дней, хотя мы и натолкнулись на дружное и упорное сопротивление. И пока эти эксперименты с длительными полетами, которые по существу были опасными (ведь у нас не было никакой информации по проблеме «организм — невесомость»), проходили благополучно. И фактически, отправляя космонавтов в каждый длительный полет, особенно увеличивая в очередной раз длительность полета, мы рисковали жизнью или здоровьем космонавтов, доверивших нам себя (не говоря уже о риске, связанном с возможными авариями).
|
|||
|