|
||||||||||||||||||||||||||||||||||||
Дискретная и непрерывная случайные величины ⇐ ПредыдущаяСтр 3 из 3 2.2. Дискретная и непрерывная случайные величины Если значения, которые может принимать данная случайная величина , образует дискретный (конечный или бесконечный) ряд чисел то и сама случайная величина называется дискретной. Если же значения, которые может принимать данная случайная величина , заполняют конечный или бесконечный промежуток (а, в) числовой оси Ох, то случайная величина называется непрерывной. Каждому значению случайной величины дискретного типа отвечает определенная вероятность ; каждому промежутку (а, в) из области значений случайной величины непрерывного типа также отвечает определенная вероятность того, что значение, принятое случайной величиной, попадает в этот промежуток.
2.3. Закон распределения случайной величины Соотношение, устанавливающее тем или иным способом связь между возможными значениями случайной величины и их вероятностями, называется законом распределения случайной величины. Закон распределения дискретной случайной величины обычно задается рядом распределения:
При этом , где суммирование распространяется на все (конечное или бесконечное) множество возможных значений данной случайной величины . Закон распределения непрерывной случайной величины удобно задавать с помощью функции плотности вероятности . Вероятность того, что значение, принятое случайной величиной , попадет в промежуток (а, в), определяется равенством . График функции называется кривой распределения. Геометрически вероятность попадания случайной величины в промежуток (а, в) равна площади соответствующей криволинейной трапеции, ограниченной кривой распределения, осью Ох и прямыми х=а, х=в.
Задача 1. Даны вероятности значений случайной величины : значение 10 имеет вероятность 0,3; значение 2 – вероятность 0,4; значение 8 – вероятность 0,1; значение 4 – вероятность 0,2. Построить ряд распределения случайной величины . Решение. Расположив значения случайной величины в возрастающем порядке, получим ряд распределения:
Возьмем на плоскости хОр точки (2; 0,4), (4; 0,2), (8; 0,1) и (10; 0,3). Соединив последовательные точки прямолинейными отрезками, получим многоугольник (или полигон) распределения случайной величины
Задача 2.Разыгрываются две вещи стоимостью по 5000 руб и одна вещь стоимостью 30000 руб. Составить закон распределения выигрышей для человека, купившего один билет из 50. Решение: (самостоятельно)
Закон распределения случайной величины имеет вид:
|
||||||||||||||||||||||||||||||||||||
|