| Точки М, Р, К – середины ребер DA, DB, DC тетраэдра DABC. Назовите прямую, параллельную плоскости FАB.
1) МР 2) РК 3) МК 4) МК и РК
|
|
АВСDA1B1C1D1 – прямоугольный параллелепипед. Какая из прямых параллельна плоскости A1AD?
1) а 2) b 3) p 4) m
|
|
В тетраэдре DАВС AM = MD, AN = NB. Плоскости какой грани параллельна прямая MN?
1) DAB 2) DBC 3) DAC 4) ABC
|
| Выберите верные высказывания:
1) Параллельные прямые не имеют общих точек.
2) Если прямая параллельна данной плоскости, то она параллельна любой прямой, лежащей в этой плоскости.
3) Если прямая параллельна линии пересечения двух плоскостей и не принадлежит ни одной из них, то она параллельна каждой из этих плоскостей.
4) Существует параллелепипед, у которого все углы граней острые.
Ответ: ______
|
| Точки А, В, С и D – середины ребер прямоугольного
параллелепипеда. Назовите параллельные прямые.
1) a || n 2) a || b
3) b || c 4) a || c
|
|
Точки А и D – середины ребер параллелепипеда. Выберите верные высказывания:
1) Прямые СD и MN пересекаются.
2) Прямые АВ и MN скрещивающиеся
3) Прямые АВ и СD параллельные.
4) Прямые АВ и MN пересекаются
Ответ: ______
|
|
Определите взаимное расположение прямых.
1) a и b – пересекающиеся прямые
2) a и b – параллельные прямые
3) a и b – скрещивающиеся прямые
|
| Точки А и В – середины ребер параллелепипеда. Определите взаимное расположение прямых.
1) a и b – пересекающиеся прямые
2) a и b – параллельные прямые
3) a и b – скрещивающиеся прямые
|
| Два равнобедренных треугольника АВС и АВD с общим основанием АВ расположены так, что точка С не лежит в плоскости АВD. Определите взаимное расположение прямых, содержащих медианы треугольников, проведенных к сторонам ВС и ВD.
1) они параллельны 2) скрещиваются 3) пересекаются
|
| В тетраэдре DАВС АВ = ВС = АС = 10; DA = DB = DC = 20. Через середину ребра ВС плоскость, параллельная АС и ВD. Найдите периметр сечения.
Ответ: ____
|