|
||||
Резонансный надувИзготовления и эксплуатации системы резонансного наддува двигателя внутреннего сгорания, который автор проделал на двигателе мотоцикла ИЖ Планета Спорт. Данный метод применим к любому ДВС (учитывая число тактов и цилиндров во впускном коллекторе), точнее к любой поршневой машине (даже к компрессору холодильника: -). Результаты полученные автором отражают особенности двигателя - " спортивный" мотор с nmax = 7000 об/мин. Для других двигателей результаты могут быть иными. Кроме того вещи, очевидные для автора но не нашедшие своего явного описания в материале сайта могут существенно повлиять на эффективность системы. Когда была написана статья я только что изготовил систему с каналом Ш 12 мм. и поэтому не мог с уверенностью сказать о преимуществах новой системы. Почему именно резонансный? Резонансный наддув, как и всякий другой, предназначен для увеличения количества поступающей в цилиндры горючей смеси. В отличие от других видов, где энергия подводится со стороны (поршни, мембраны, турбины), резонансный наддув использует колебания воздушного столба во впускном коллекторе, увеличивая степень заполнения цилиндров двигателя. Часто можно слышать мнение, что резонансный наддув недостаточно эффективен. Конечно, если его сравнивать с классическим наддувом с подводом энергии, то это так. Мысль о том, что рабочий процесс двухтактного двигателя " ИЖ-ПС" на частотах, близких к холостому ходу, далек от совершенства, возникла у меня при осенней консервации мотора. При поднятии дросселя для впрыскивания масла горючая смесь резко ударила в руку и покрыла ее капельками топлива. Обратный выброс!
Теперь о том, как резонатор работает. Он начинает действовать, когда дроссель прикрыт достаточно, что бы его гидравлическое сопротивление стало сопоставимым с сопротивлением канала резонатора. При движении поршня вверх горючая смесь поступает в кривошипную камеру не только из-под дросселя карбюратора, но и из ёмкости. При уменьшении разрежения резонатор начинает всасывать в себя горючую смесь. Сюда же пойдет часть (и довольно большая) обратного выброса. При этом уменьшается выброс топлива в воздушный фильтр, уменьшаются так же колебания давления над распылителем, что благоприятно для распыла топлива. Эффективность конструкции возрастает при опускании дросселя. 1. При увеличении расчетной частоты возрастает гидравлическое сопротивление канала (больше скорость протекания горючей смеси), а также уменьшается время на цикл, вместе с тем на малых оборотах двигатель не развивает достаточную мощность. 2. Работа двигателя на частоте ниже резонанса эффективнее, чем выше него. 3. Канал должен быть по возможности короче (малое линейное сопротивление), а емкость - возможно вместительней (большее количество подсасываемой смеси при одинаковом разрежении во впускном тракте). 4. Все элементы резонатора должны быть достаточно жесткими, чтобы сохранять форму под действием разрежения. Расчет собственной частоты колебаний резонатора можно вести по измененной формуле для пружинного маятника: где: С=340 - скорость звука, м/с V - объем камеры K - проводимость канала:
где в свою очередь: d - диаметр канала в шланге, м. (метры!!! ) l - длина канала, м. В заключении расскажу о последнем варианте резонатора. Его эффективность заметно выше, чем у описанного ранее. Емкость склеена из фанеры и имеет объем 0, 78 литра, использован шланг внутренним диаметром 12 мм. , общая длина канала ( со штуцерами) - 235 мм. (длину канала мерить по оси симметрии его сечений). Системы резонансного наддува двигателя внутреннего сгорания условно можно разделить на два вида: линейные и объемные. В линейных системах определяющими характеристиками являются длина канала от элемента газораспределения (клапана или поршня) до места внезапного изменения его диаметра (обычно какой-нибудь камеры) и скорость звука, определяющая время за которое волна разряжения (сжатия) успеет пробежать туда и обратно. Наглядно понять принцип работы это вида резонатора поможет ситуация, когда теннисист бьет мячом о стенку, где время между ударами зависит главным образом от расстояния до нее (в нашем случае скорость звука постоянна). Объемные резонатор (резонатор Геймгольца), о котором и пойдет речь дальше, представляют из себя емкость (объем), соединенную с впускным коллектором дополнительным каналом. По аналогии с предыдущим примером работу системы можно проиллюстрировать грузом, подвешенным на пружине, где роль пружины играет горючая смесь, находящаяся в емкости, а роль груза смесь, находящаяся в канале. Расчет собственной частоты колебаний резонатора можно вести по формуле, аналогичной формуле для пружинного маятника: где: С=340- скорость звука, м/с V - объем камеры K - проводимость канала:
где в свою очередь: d - диаметр канала в шланге, м. (метры!!! ) l - длина канала, м. Зависимость резонансной частоты от объема камеры резонатора для трех вариантов длин канала показана на графике (используется канал - дюритовый шланг внутренним диаметром 12 мм. ): Пунктиром показан вариант расчет которого приведен далее. Результат расчета получается в Герцах. Для получения более привычных оборотов в минуту его нужно умножить на 60: - 41, 66 • 60 сек. = 2500 об/мин
Оценить эффективность рассчитанной конструкции можно вычислив параметр N: где: F - площадь поперечного сечения впускного коллектора. Для сравнения заметим, что это значение для варианта описанного в начале журнальной статьи равно только 0, 008 и никаких вещественных результатов, кроме понижения частоты холостого хода в этом случаи не наблюдалось.
После геометрического расчета резонатора, который определяет частоту маятника, необходимо указать общие принципы построения канала - от этого зависит, какие потери энергии будут в потоке при его движении взад - вперед. Основная рекомендация - канал должен быть максимально " зализан" В качестве примера вышеупомянутой рекомендации приводится 3-d модель штуцера-проставки для двигателя ВАЗ. Модель представлена в формате VRML (175 kb) и IGES (86kb), упакованного в ZIP архив. Из всего вышеизложенного у читающего может сложиться впечатление, что у системы имеются только положительные качества. Это конечно не так. Все положительные качества присутствуют, когда система работает. Когда же надо систему запустить (завести мотор) особенно при низких температурах, обычно смесь обогащается подсосом (манеткой). Т. к. между кривошипной камерой и дросселем карбюратора присутствует дополнительная емкость раза в 2-3 превышающая рабочий объем цилиндра, то примерно во столько же раз уменьшается и разрежение во впускном канале при прокручивании двигателя без установления резонанса. В результате чего оказывается невозможным достичь необходимого обогащения смеси. Правда эта проблема решается достаточно просто - съемом шланга со штуцера проставки и впрыскиванием туда бензина. Указанная проблема проявляется уже при +50 С. Других проблем за 4 года эксплуатации замечено не было.
Коментарий: Из моего опыта использования резонансного надува на самолёте с двигателем ИЖ-П-3 наблюдалось прибавление мощности на средних оборотах. Тек как резонансная камера имела явно выраженную острую характеристику на средених оборотах, то двигатель при малом газе работал не стабильно, за то при среднем и максимальном давал прибавку в 10% - 5% мощности. Резонансная камера была устроена по другому принципу - Патрубок- обьём перед карбюратором (по принципу настроенного выхлопа). В общем система полезная как на мототранспорте, так и на лодочных моторах и самолётах СЛА.
|
||||
|