Хелпикс

Главная

Контакты

Случайная статья





2.2 Причины снижения пропускной способности



 

ОЧИСТКАГАЗА ОТ МЕХАНИЧЕСКИХ ПРИМЕСЕЙ

К механическим примесям относятся частицы породы, выносимые газовым потоком из скважины, строительный шлам, оставшийся после окончания строительства промысловых газосборных сетей и магистральных трубопроводов, продукты коррозии и эрозии внутренних поверхностей и жидкие включения конденсата и воды. По принципу работы аппараты для очистки газа от механических примесей подразделяются на следующие: 1- работающие по принципу «сухого» отделения пыли; в таких аппаратах отделение пыли происходит в основном с использованием сил гравитации и инерции; к ним относятся циклонные пылеуловители, гравитационные сепараторы, различные фильтры (керамические, тканевые, металлокерамические и др. ); 2-работающие по принципу «мокрого» улавливания пыли; в этом случае удаляемая из газа взвесь смачивается промывочной жидкостью, которая отделяется от газового потока, выводится из аппарата для регенерации и очистки и затем возвращается в аппарат; к ним относятся вертикальные и горизонтальные масляные пылеуловители и др.; 3- использующие принцип электроосаждения; данные аппараты почти не применяют для очистки природного газа.

Наиболее широко используют аппараты «мокрого» и «сухого» пылеулавливания. Очистка газа по пути следования его от месторождения до потребителя производится в несколько ступеней. Для ограничения выноса из месторождения породы призабойную зону оборудуют фильтром.

Вторую ступень очистки газ проходит на промысле в наземных сепараторах, в которых сепарируется жидкость (вода и конденсат) и газ очищается от частиц породы и пыли. Промысловые очистные аппараты работают по принципу выпадения взвеси под действием силы тяжести при уменьшении скорости потока газа или по принципу использования действия центробежных сил при специальной закрутке потока. Поэтому промысловые аппараты очистки делятся на гравитационные и циклонные. Гравитационные аппараты бывают вертикальные и горизонтальные. Вертикальные гравитационные аппараты рекомендуют для сепарации газов, содержащих твердые частицы и тяжелые смолистые фракции, так как они имеют лучшие условия очистки и дренажа. На рис. 3. 10 изображен гравитационный односекционный сепаратор. Он имеет тангенциальный подвод газа (скорость газа в нем достигает 15—20 м/с), что способствует выпадению в сепараторе твердой взвеси и капельной влаги. В основном он работает по принципу выпадения взвеси при малых скоростях восходящего потока газа.

Вертикальные сепараторы изготовляют диаметром 400—1650 мм, горизонтальные—диаметром 400—1500 мм при максимальном давлении 16 МПа. При оптимальной скорости газа эффективность сепарации достигает 70—80 %. Опыт эксплуатации показал, что то не должна превышать 0, 1 м/спри давлении 6 МПа. Из-за большой металлоемкости и недостаточной их эффективности гравитационные сепараторы применяют редко.

На рис. 3. 11 схематически изображена работа циклонного сепаратора. Корпус циклона и патрубок для выхода газа образуют внутреннее кольцевое пространство. В нижней части имеется отверстие для отвода осадка из циклона.

При тангенциальном вводе газ в сепараторе приобретает в кольцевом пространстве и конусе вращательное движение, вследствие чего из газа выпадают механические взвеси (твердые и жидкие) и опускаются в сборный бункер. Газ с уменьшенной скоростью выходит через выходной патрубок.

Третья ступень очистки газа производится на линейной части газопровода и компрессорных станциях. На линейной части устанавливают конденсатосборники, так как в результате несовершенной сепарации на промысле газ может иметь жидкую фазу. Наибольшее распространение получил конденсатосборник типа «расширительная камера» (рис. 3. 12). Принцип работы основан на выпадении из потока газа капелек жидкости под действием силы тяжести из-за местного снижения скорости газа при увеличении диаметра трубопровода.

 

При эксплуатации газопроводов с системой «расширительных камер» бывают затруднения, связанные с пропуском устройств для очистки внутренней полости трубопровода. Для этого необходимо предусматривать специальные направляющие для беспрепятственного прохождения через них очистного устройства. Для очистки газа от механических примесей на отечественных газопроводах применяют установки с масляными пылеуловителями (рис. 3. 13). Природный газ Г, пройдя пылеуловители 1, направляется в компрессорный цех. Пылеуловители заполнены маслом. По мере загрязнения масло МЗ передавливается из пылеуловителей 1 в отстойники 7. Свежее масло МС поступает в пылеуловители самотеком из масляного аккумулятора 2, Предварительно в аккумуляторе и пылеуловителях выравнивают давление. В масляный аккумулятор масло подается насосом 3 из мерного бака 5 или из бака свежего масла 4. При этом аккумулятор отключают от пылеуловителей и находящийся в нем газ выпускают в атмосферу. В мерный бак масло поступает самотеком из отстойников 7. Отбросное масло МО вместе со шламом, накапливающимся в нижней части отстойников, спускают в сборную емкость 6.

Вертикальный масляный пылеуловитель (рис. 3. 14) представляет собой вертикальный стальной цилиндр со сферическим днищем, рассчитанным на рабочее давление в газопроводе. Диаметр пылеуловителя 1080—2400 мм. Внутри пылеуловителя находятся устройства, обеспечивающие контактирование масла с газом и отделение частиц масла от газа при выходе его из аппарата. Газ поступает в пылеуловитель через входной патрубок 7. Благодаря отбойному козырьку 8 газ меняет свое направление и движется к поверхности масла, находящегося в нижней части аппарата. Крупные посторонние частицы при этом сразу же выпадают и оседают на дно. Уровень масла устанавливается на расстоянии 25—30 мм от концов вертикальных трубок 3. При этом газ устремляется вверх, захватывая с собой частицы масла. В трубках 3, а далее в средней свободной части пылеуловителя газ интенсивно перемешивается с маслом, которое поглощает содержащиеся в газе частицы, а также поступающий вместе с газом конденсат тяжелых углеводородов. При этом уровень масла повышается. По выходе газа из вертикальных трубок скорость его резко уменьшается. Более крупные частицы жидкости при этом выпадают и по дренажной трубке 4 стекают вниз. Из свободной средней части пылеуловителя газ и масляный туман поступают в верхнюю его часть, а оттуда в жалюзийное сепарационное устройство 1, в которое отбирается мелкозернистая взвесь. Очищенный газ выходит через патрубок 2. Загрязненное масло удаляется из поддона через дренажную трубку 5. Полная очистка пылеуловителя производится 3—4 раза в год через люк 6. Количество заливаемого масла в пылеуловитель диаметром 2400 мм не превышает 1, 5—2 м3. Пропускная способность масляного пылеуловителя (м3/сут) может быть рассчитана по формуле  где D — внутренний диаметр пылеуловителя, м; р—давление газа, МПа; рж и рг — плотность смачивающей жидкости и газа при рабочих условиях, кг/м3; Т -температура газа, К.

Чтобы обеспечить нормальную работу пылеуловителей, необходимо поддерживать постоянный уровень масла. Пропускная способность вертикальных масляных пылеуловителей при заданном давлении ограничивается скоростью потока газа в контактных трубках, которая не должна превосходить 1—3 м/с. Преимущество вертикального масляного пылеуловителя по сравнению с другими конструкциями пылеуловителей заключается в высокой степени очистки (общий коэффициент очистки достигает 97—98 %);
недостатки —большая металлоемкость, наличие жидкости и ее унос (допускается не более 25 г на 1000 м3 газа), большое гидравлическое сопротивление (0, 035—0, 05 МПа), чувствительность к изменениям уровня жидкости и др.

Циклонный пылеуловитель представляет собой сосуд цилиндрической формы с встроенными в него циклонами. Газ поступает через боковой верхний входной патрубок враспределитель, к которому приварены своими входными патрубками звездообразно
расположенные циклоны, которые закреплены неподвижно на нижней решетке. Отсепарированная жидкость и твердые частицы по дренажному конусу циклона попадают в грязевик. Для автоматического удаления собранного шлама имеется дренажный штуцер. Качество очистки повышается с уменьшением диаметра циклона. Поэтому созданы батарейные циклоны, объединяющие в общем корпусе группу циклонов малого диаметра. Закручивание потока осуществляется в циклонах типа «розетка» или «улитка».

 

 

       Рис. 3. 14. Вертикальный масляный пылеуловитель

 

1. 13  Вывод формулы Дарси-Вейсбаха.

 

 

Преобразуем выражение закона Гагена-Пуазейля, выразив расход Q через произведение средней скорости и площади поперечного сечения

(1)

для удобства использования зависимости (1) при решении практических задач преобразуем ее следующим образом: коэффициент трения на единицу длины (коэффициент Дарси), получим окончательно потери по длине

учитывая, что , получим

Обозначая через гидравлический коэффициент трения на единицу длины (коэффициент Дарси), получим окончательно, что потери по длине

Данная зависимость называется формулой Дарси-Вейсбаха и следует отметить, что для ламинарного режима течения гидравлический коэффициент трения получен теоретическим путем.

 

2. 2 Причины снижения пропускной способности

 

В процессе эксплуатации внутренняя полость труб нефтепровода за­соряется скоплением воды, парафина, паров, механических примесей. По­степенное нарастание этих скоплений приводит к снижению пропускной способности магистрального нефтепровода.

Предварительные причины засорения нефтепровода могут быть определены по характеру изменения эффективности работы во времени. Если в зимнее время снижение эффективности работы замедляется или даже эффективность начинает расти, то полость засоряется водой.

Повышение эффективности работы при повышении температуры грунта говорит о наличии процесса отложения парафина на стенках труб.

Окончательный вывод можно сделать, исследовав состав отложений из трубопро-вода при очистке.

В соответствии с правилами эксплуатации магистральных нефтепроводов очистку следует производить при снижении его пропускной способности на 3%. Снижение фактической производительности на 3% по отношению к производительности чистого нефтепровода произойдёт при снижении эффективности до 0, 948 – при работе в зоне Блазиуса (гидравлически гладкие трубы) и до 0, 944 – при работе в зоне смешанного трения.

При температурах 25 – 350С и выше парафин растворен в нефти и не оказывает существенного влияния на её транспорт. При более низких температурах и при температу­рах ниже температуры начала кристаллизации Тнк парафин выделяется в виде кристаллов, которые при определенных условиях могут отложиться на стенках трубопровода. Плотность отложений зависит от состава нефти, скорости её течения в трубопроводе и температуры нефтей и грунта. Счита­ется, что благоприятными условиями для образования парафиновых отло­жений являются малая вязкость нефти, меньше 0, 2 Ст, и оптимальный диа­пазон изменения температуры в нефтепроводе – Тнк> Т> Т0. Большое влияние на процесс образования отложений оказывает скорость течениянефти. При отсутствии течения отложения практически не образуются или образуются рыхлые и непрочные, легко смываемые при начале движения нефти. По мере увеличения скорости возрастает интенсивность образова­ния отложений, достигая максимума при скорости VM. Дальнейшее увели­чение скорости приводит к снижению интенсивности образования отложе­ний и при скорости V0образование отложений прекращается.

Образующиеся на стенках труб отложения только на 40 – 60% состо­ят из парафинов, оставшаяся часть представлена другими компонентами приблизительно пропорционально их содержанию в нефти. Прочность от­ложений зависит от состава парафинов в нефти, чем выше их температура плавления, тем больше прочность отложений.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.