|
|||
5.5. Классификация звездЗвезды делятся по цвету, температуре и спектральному классу (спектру). А также по светимости (Е), звездной величине (“m” — видимой и “М” — истинной). Спектральный класс. Мимолетный взгляд на звездное небо может дать неправильное впечатление, что все звезды одинакового цвета и яркости. В действительности цвет, светимость (блеск и яркость) у каждой звезды разные. Звезды, например, имеют следующие цвета: пурпурный, красный, оранжевый, зелено-желтый, зеленый, изумрудный, белый, голубой, фиолетовый, лиловый. Цвет звезды зависит от ее температуры. По температуре звезды разделяются на спектральные классы (спектры), величина которых определяет ионизации газа атмосферы: · красный — температура звезды около 600° (таких звезд на небе около 8%); · алый — 1000°; · розовый — 1500°; · светло-оранжевый — 3000°; · соломенно-желтый — 5000° (их около 33%); · желтовато-белый* — 6000°; · белый — 12000-15000° (их на небе около 58%); · голубовато-белые — 25000°. *В этом ряду наше Солнце (имеющее температуру 6000°) соответствует желтому цвету. Самые горячие звезды – голубые, а самые холодные – инфракрасные. Больше всего на нашем небе белых звезд. Холодными являются и коричневые карлики (очень маленькие, объемом с Юпитер), но они больше по массе, чем Солнце в 10 раз. По цвету звезды делятся на 10 классов в порядке убывания температуры: О, В, А, F, D, К, М; S, N, R. Звезды «О» — самые холодные, звезды «М» — горячие. Последние три класса (S, N, R), а также дополнительные спектральные классы С, WN, WС — принадлежат к редким переменным (вспыхивающим) звездам с отклонениями в химическом составе. Таких переменных звезд около 1%. Где О, В, А, F — ранние классы, а все остальные D, K, M, S, N, R — поздние классы. Кроме перечисленных 10 спектральных классов существуют еще три: Q — новые звезды; P — планетарные туманности; W — звезды типа Вольфа-Райе, которые делятся на углеродную и азотную последовательности. В свою очередь каждый спектральный класс делится на 10 подклассов от 0 до 9, где более горячая звезда обозначается (0), а холодная — (9). Например, А0, А1, А2, …, В9. Иногда дают более дробную классификацию (с десятыми долями), например: А2, 6 или М3, 8. Спектральную классификацию звезд записывают в следующем виде (5. 2. ):
S побочный ряд O — B — A — F — D — K — M основная последовательность (5. 2. ) R N побочный ряд
Двойные звезды иногда обозначаются двойными буквами, например, АЕ, FF, RN. Основные спектральные классы (основная последовательность): “О” (голубые) — обладают высокой температурой и непрерывной большой интенсивностью ультрафиолетового излучения, вследствие чего свет от этих звезд кажется голубым. Наиболее интенсивны линии ионизированного гелия и многократно ионизированных некоторых других элементов (углерода, кремния, азота, кислорода). Наиболее слабые линии нейтрального гелия и водорода; “В” (голубовато-белые) — линии нейтрального гелия достигают наибольшей интенсивности. Хорошо видны линии водорода и линии некоторых ионизированных элементов; “А” (белые) — линии водорода достигают наибольшей интенсивности. Хорошо видны линии ионизированного кальция, наблюдаются слабые линии других металлов; “F” (слегка желтоватые) — линии водорода становятся слабее. Усиливаются линии ионизированных металлов (особенно кальция, железа, титана); “D” (желтые) — водородные линии не выделяются среди многочисленных линий металлов. Очень интенсивны линии ионизированного кальция; “К” (красноватый) — линии водорода не заметны среди очень интенсивных линий металлов. Фиолетовый конец непрерывного спектра заметно ослаблен, что свидетельствует о сильном уменьшении температуры по сравнению с ранними классами, такими, как О, В, А; “М” (красные) — линии металлов ослаблены. Спектр пересечен полосами поглощения молекул окиси титана и других молекулярных соединений. Предполагают, что источником энергии звезды является реакция ядерного синтеза. Чем мощнее эта реакция, тем больше светимость звезды. По светимости звезды делятся на 7 классов: · I (а, б) — сверхгиганты; · II — яркие гиганты; · III — гиганты; · IV — субгиганты; · V — главная последовательность; · VI — субкарлики; · VII — белые карлики. Самая горячая звезда — это ядро планетарных туманностей. Для указания класса светимости кроме приведенных обозначений применяются также следующие: · с — сверхгиганты; · д — гиганты; · d — карлики; · sd — субкарлики; · w — белые карлики. Наше Солнце относится к спектральному классу D2, а по светимости к группе V и общее обозначение Солнца имеет вид D2V. Самая яркая сверхновая звезда вспыхнула весной 1006 года в южном созвездии Волка (согласно китайским летописям). В максимуме своего блеска она была ярче Луны в первой четверти и была видна невооруженным глазом в течение 2 лет. Блеск или видимая яркость (освещенность, L) — это один из главных параметров звезды. В большинстве случаев радиус звезды (R) определяют теоретически, исходя из оценки ее светимости (L) во всем оптическом диапазоне и температуры (Т). Светимость звезды (L) прямо пропорциональна величинам Т и L (5. 3. ): L = R ∙ T
Звездная величина. Светимость (отношение силы света звезды к силе солнечного света) зависит от расстояния звезды до Земли и измеряется звездной величиной. Звездная величина — безразмерная физическая величина, характеризующая освещенность, создаваемую небесным объектом вблизи наблюдателя. Средний блеск звезд принят за (+1), что соответствует первой звездной величине. Звезда второй звездной величины (+2) в 2, 512 раз слабее первой. Звезда (-1) величины в 2, 512 раз ярче первой звездной величины. Иными словами, чем звездная величина источника положительно численно больше, тем источник слабее*. Все крупные звезды имеют отрицательную (-) звездную величину, а все мелкие – положительную (+). По светимости звезды делятся на 2 звездные величины: · “М” абсолютную (истинную); · “m” относительную (видимую с Земли). Относительная видимая звездная величина (m) — это видимый с Земли блеск звезды. Она не определяет действительную характеристику звезды. В этом виновато расстояние до объекта. В табл. 5. 3., 5. 4. и 5. 5. представлены некоторые звезды и объекты земного неба по светимости от самых ярких (-) до слабых (+). Самая большая звезда из известных — это R Золотой Рыбы (которое находится в южном полушарии неба). Она входит в состав соседней с нами звездной системы – Малого Магелланова Облака, расстояние до которого от нас в 12000 раз больше, чем до Сириуса. Это красный гигант, его радиус в 370 раз больше солнечного (что равно орбите Марса), но на нашем небе это звездочка видна всего лишь +8 звездной величиной. Она имеет угловой диаметр 57 угловых миллисекунд и находится от нас на расстоянии 61 парсек (пк). Если представить Солнце размером с волейбольный мяч, то звезда Антарес будет иметь диаметр 60 метров, Мира Киты – 66, Бетельгейзе – около 70. Одна из самых маленьких звезд нашего неба — нейтронный пульсар PSR 1055-52. Его диаметр всего 20 км, но светит он сильно. Его видимая звездная величина +25. Самая близкая к нам звезда — это Проксима Центавра (Кентавра), до нее 4, 25 св. лет. Эта звезда +11-й звездной величины располагается на южном небе Земли.
5. 6. Некоторые типы звезд Квазары – это самые далекие космические тела и самые мощные источники видимого и инфракрасного излучения, наблюдаемые во Вселенной. Это видимые квазизвезды, имеющие необычный голубой цвет и являющиеся мощным источником радиоизлучения. Квазар в месяц излучает энергию, равную всей энергии Солнца. Размер квазара доходит до 200 а. е. Это самые удаленные и быстродвижущиеся объекты Вселенной. Открыты в начале 60-х годов 20 века. Их истинная светимость в сотни миллиардов раз больше светимости Солнца. Но эти звезды имеют переменную яркость. Самый яркий квазар ЗС-273 расположен в созвездии Девы, он имеет звездную величину +13m. Белые карлики – самые маленькие, плотные, с малой светимостью звезды. Диаметр — примерно в 10 раз меньше солнечного. Нейтронные звезды – звезды, в основном состоящие из нейтронов. Очень плотные, с огромной массой. Обладают различными магнитными полями, у них происходят частые вспышки различной мощности. Магнитары – один из видов нейтронных звезд, звезды с быстрым вращением вокруг своей оси (около 10 сек. ). 10% всех звезд являются магнитарами. Существует 2 вида магнитаров: v пульсары – открыты в 1967 году. Это сверхплотные космические пульсирующие источники радио-, оптического, рентгеновского и ультрафиолетового излучения, достигающего поверхности Земли в виде периодически повторяющихся всплесков. Пульсирующий характер излучения объясняется быстрым вращением звезды и ее сильного магнитного поля. Все пульсары находятся от Земли на расстоянии от 100 до 25000 св. лет. Обычно рентгеновские звезды – это двойные звезды. v ИМПГВ — источники с мягкими повторяющимися гамма всплесками. В нашей Галактике их открыто около 12 шт., это молодые объекты, они располагаются в плоскости Галактики и в Магеллановых облаках.
5. 7. Орбиты звезд Собственное движение звезд первым обнаружил английский астроном Э. Галлей. Он сравнил данные Гиппарха (3 век до н. э. ) со своими данными (1718 год) по перемещению на небе трех звезд: Проциона, Арктура (созвездие Волопас) и Сириуса (созвездие Большой Пес). Движение нашей звезды Солнца в Галактике в 1742 году доказал Дж. Брадлей, а окончательно подтвердил в 1837 году финский ученый Ф. Аргеландер. Орбиты звезд в Галактике. Движение звезд, как и планет, подчиняется определенным законам: · они двигаются по эллипсу; · их движение подчинено второму закону Кеплера (“прямая линия, соединяющая планету с Солнцем (радиус-вектор) описывает равные площади (S) в равные промежутки времени (Т)”. Этот закон Кеплера можно условно назвать законом “единства времени и пространства”. Подобную закономерность эллиптического движения подсистем вокруг центра своих систем мы также наблюдаем, рассматривая движение электрона в атоме вокруг своего ядра в модели атома Резерфорда-Бора. Вращение звезд имеет следующие особенности: вращение идет в спиральных рукавах Галактики в одном направлении; · угловая скорость вращения убывает по мере удаления от центра Галактики. Однако это убывание несколько медленнее, чем, если бы вращение звезд вокруг центра Галактики происходило по закону Кеплера; · линейная скорость вращение сначала возрастает по мере удаления от центра, а затем примерно на расстоянии Солнца она достигает наибольшего значения (около 250 км/с), после чего очень медленно убывает; · старея, звезды перемещаются от внутреннего к внешнему краю рукава Галактики; · Солнце и звезды в его окружении совершают полный оборот вокруг центра Галактики предположительно за 170-270 млн. лет (данные разных авторов) (что в среднем составляет около 220 млн. лет). Белые карлики составляют 2, 3-2, 5% от всех звезд. Одиночные звезды только белые или желтые. А двойные звезды встречаются всех цветов спектра. Двойная система – система из двух звезд, обращающихся по орбитам вокруг общего центра масс. Физически двойная звезда – это две звезды, видимые на небе близко друг к другу и связанные силой тяготения. Большинство звезд двойные. Статистика говорит, что двойные звезды чаще состоят из холодного красного гиганта и горячего карлика. Расстояние между ними примерно равно 5 а. е. Оба объекта погружены в общую газовую оболочку, вещество для которой отдает красный гигант в виде звездного ветра и в результате пульсаций.
|
|||
|