Хелпикс

Главная

Контакты

Случайная статья





100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ 30 страница



Изобретение лампового генератора позволило сделать важный шаг в технике радиосвязи — кроме передачи телеграфных сигналов, состоявших из коротких и более продолжительных импульсов, стала возможна надежная и высококачественная радиотелефонная связь — то есть передача с помощью электромагнитных волн человеческой речи и музыки. Может показаться, что радиотелефонная связь не имеет в себе ничего сложного. В самом дела, звуковые колебания с помощью микрофона легко преобразуются в электрические. Почему бы, усилив их и подав в антенну, не передавать на расстояние речь и музыку точно так же, как передавался до этого код Морзе? Однако в действительности такой способ передачи неосуществим, так как через антенну хорошо излучаются только мощные колебания высокой частоты. А медленные колебания звуковой частоты возбуждают в пространстве настолько слабые электромагнитные волны, что принять их нет никакой возможности. Поэтому до создания ламповых генераторов, вырабатывающих колебания высокой частоты, радиотелефонная связь представлялась чрезвычайно сложным делом. Для передачи звука эти колебания изменяют или, как говорят, модулируют с помощью колебаний низкой (звуковой) частоты. Суть модуляции заключается в том, что высокочастотные колебания генератора и низкочастотные от микрофона накладываются друг на друга и таким образом подаются в антенну.

Модуляция может происходить разными способами. Например, микрофон включается в цепь антенны. Так как сопротивление микрофона меняется под действием звуковых волн, ток в антенне будет в свою очередь меняться; иначе говоря, вместо колебаний с постоянной амплитудой, мы будем иметь колебания с изменяющейся амплитудой — модулированный ток высокой частоты.

Принятый приемником модулированный высокочастотный сигнал даже после усиления не способен вызвать колебания мембраны телефона или рупора громкоговорителя со звуковой частотой. Он может вызвать только высокочастотные колебания, не воспринимаемые нашим ухом. Поэтому в приемнике необходимо произвести обратный процесс — из высокочастотных модулированных колебаний выделить сигнал звуковой частоты — или, говоря другими словами, произвести детектирование сигнала.

Детектирование осуществлялось с помощью вакуумного диода. Диод, как уже говорилось, пропускал ток только в одном направлении, превращая переменный ток в пульсирующий. Этот пульсирующий ток сглаживался с помощью фильтра. Простейшим фильтром мог быть конденсатор, подключенный параллельно с телефонной трубкой. Работа фильтра происходила так. В тот момент времени, когда диод пропускал ток, часть его ответвлялась в конденсатор и заряжала его. В промежутках между импульсами, когда диод оказывался заперт, конденсатор разряжался на трубку. Поэтому в интервале между импульсами ток протекал через трубку в ту же сторону, что и сам импульс. Каждый следующий импульс подзаряжал конденсатор. Благодаря этому через трубку протекал ток звуковой частоты, форма которого почти полностью воспроизводила форму низкочастотного сигнала на передающей станции. После усиления электрические колебания низкой частоты превращались в звук; Простейший детекторный приемник состоит из колебательного контура, связанного с антенной, и присоединенной к контуру цепи, состоящей из детектора и телефона.

Первые электронные лампы были еще очень несовершенны. Но в 1915 году Лэнгмюр и Гедэ предложили эффективный способ откачки ламп до очень малых давлений, благодаря чему на смену ионным лампам пришли вакуумные. Это подняло электронную технику на значительно более высокий уровень.

 

77. ТАНК

 

Технические предпосылки для создания танка появились еще в конце XIX столетия — к тому времени были изобретены гусеничный движитель, двигатель внутреннего сгорания, броня, скорострельные пушки и пулеметы. Первый гусеничный трактор на паровом ходу создал еще в 1888 году американец Бэтером. Накануне Первой мировой войны, как уже отмечалось, появился промышленный гусеничный трактор " Холт", который можно считать непосредственным предшественником танка.

Но одних предпосылок было мало — недоставало насущной потребности. Только начавшаяся в 1914 году Первая мировая война жестко определила эту необходимость. Когда противники бросили в наступление миллионные армии, они никак не предполагали, что пулеметы и пушки буквально сметут идущие в атаку полки и дивизии. Громадные потери заставили солдат в конце концов скрыться в окопах и блиндажах. На Западе фронт застыл и превратился в сплошную линию укреплений, протянувшуюся от Ла-Манша до границы со Швейцарией. Война зашла в так называемый позиционный тупик. Выход из него пытались найти при помощи артиллерии — тысячи орудий в течение нескольких дней, а то и недель перепахивали снарядами каждый метр неприятельских позиций. Казалось, там не осталось ничего живого. Но как только атакующая пехота выбиралась из окопов, уцелевшие пушки и пулеметы обороняющихся вновь наносили ей чудовищные потери. Вот тогда-то на поле боя и появились танки.

Мысль создать боевую гусеничную машину, способную передвигаться по пересеченной местности через окопы, рвы и проволочные заграждения, впервые высказал в 1914 году английский полковник Суинтон. После обсуждения в различных инстанциях военное министерство в целом приняло его идею и сформулировало основные требования, которым должна была отвечать боевая машина. Она должна была быть небольшой, иметь гусеничный ход, пуленепробиваемую броню, преодолевать воронки до 4 м и проволочные заграждения, развивать скорость не менее 4 км/ч, иметь пушку и два пулемета. Основным назначением танка было разрушение проволочных заграждений и подавление пулеметов противника. Вскоре фирма Фостера за сорок дней создала на базе гусеничного трактора " Холт" боевую машину, получившую название " Маленький Вилли". Его главными конструкторами были инженер Триттон и лейтенант Вильсон.

" Маленький Вилли" был испытан в 1915 году и показал неплохие ходовые качества. В ноябре фирма " Холт" приступила к изготовлению новой машины. Конструкторам предстояла трудная проблема не утяжеляя танка, увеличить его длину на 1 м, чтобы он мог преодолевать четырехметровые окопы. В конце концов это удалось достигнуть за счет того, что обводу гусеницы придали форму параллелограмма. Кроме того, оказалось, что танк с трудом берет вертикальные насыпи и крутые возвышения. Чтобы увеличить высоту зацепа, Вильсон и Триттон придумали пустить гусеницу поверх корпуса. Это значительно повысило проходимость машины, но одновременно породило ряд других затруднений, связанных, в частности, с размещением пушек и пулеметов. Вооружение пришлось распределить по бортам, а чтобы пулеметы могли стрелять по курсу в сторону и назад, их установили в боковых выступах — спонсонах. В феврале 1916 года новый танк, названный " Большой Вилли", с успехом прошел ходовые испытания. Он мог преодолевать широкие окопы, двигаться по вспаханному полю, перебираться через стенки и насыпи высотой до 1, 8 м. Окопы до 3, 6 м не представляли для него серьезного препятствия.

Корпус танка представлял собой коробку-каркас из уголков, к которым на болтах крепились бронированные листы. Броней была закрыта и ходовая часть, которая состояла из малых неподрессоренных опорных катков (тряска в машине была ужасной). Внутри " сухопутный крейсер" напоминал машинное отделение небольшого корабля, по которому можно было ходить, даже не пригибаясь. Для водителя и командира в передней части имелась отдельная рубка. Большую часть остального пространства занимали мотор " Даймлер", коробка передач и трансмиссия. Для пуска двигателя 3–4 человека команды должны были вращать огромную пусковую рукоять, пока мотор не заводился с оглушительным ревом. На машинах первых марок внутри размещались еще и топливные баки. С обеих сторон двигателя оставались узкие проходы. Боеприпасы находились на полках между верхней частью двигателя и крышей. На ходу в танке скапливались выхлопные газы и пары бензина. Вентиляция не предусматривалась. Между тем жар от работающего двигателя вскоре делался невыносимым — температура достигала 50 градусов. Кроме того, при каждом выстреле пушки танк наполнялся едкими пороховыми газами. Экипаж не мог подолгу оставаться на боевых местах, угорал и страдал от перегрева. Даже в бою танкисты иной раз выскакивали наружу, чтобы вдохнуть свежего воздуха, не обращая при этом внимания на свист пуль и осколков. Существенным недостатком " Большого Вилли" оказались узкие гусеницы, которые вязли в мягкой почве. При этом тяжелый танк садился на грунт, пни и камни. Плохо было с наблюдением и связью — смотровые щели в бортах не обеспечивали осмотра, зато брызги от пуль, попавших вблизи них в броню, поражали танкистов в лицо и глаза. Радиосвязи не было. Для дальней связи держали почтовых голубей, для ближней — специальные сигнальные флажки. Не было и внутреннего переговорного устройства.

Управление танком требовало значительных усилий водителей и командира (последний отвечал за тормоза гусениц правого и левого борта). Танк имел три коробки передач — одну основную и по одной на каждом борту (каждая из них управляла специальной трансмиссией). Поворот осуществлялся или торможением одной гусеницы, или переключением одной из бортовых коробок передач в нейтральное положение, в то время как на другом борту включали первую или вторую передачу. С остановленной гусеницей танк разворачивался почти на месте.

Впервые танки были применены в бою 15 сентября 1916 года у деревни Флер-Курслет в ходе грандиозного сражения на Сомме. Наступление англичан, начатое в июле, дало ничтожные результаты и весьма ощутимые потери. Тогда-то главнокомандующий генерал Хейг решил бросить в бой танки. Всего их было 49, но на исходные позиции вышло только 32, остальные из-за поломок остались в тылу. В атаке участвовали всего 18, но за несколько часов они продвинулись вместе с пехотой в глубь немецких позиций на 5 км на фронте такой же ширины. Хейг был доволен — по его мнению, именно новое оружие сократило потери пехоты в 20 раз против " нормы". Он немедленно направил требование в Лондон сразу на 1000 боевых машин.

В последующие годы англичане выпустили несколько модификаций Mk (таково было официальное название " Большого Вилли" ). Каждая следующая модель была совершеннее предыдущей. Например, первый серийный танк Mk-1 имел вес 28 тонн, передвигался со скоростью 4, 5 км/ч, был вооружен двумя пушками и тремя пулеметами. Экипаж его составляли 8 человек. Более поздний танк MkA имел скорость 9, 6 км/ч, вес — 18 тонн, экипаж — 5 человек, вооружение — 6 пулеметов. MkC при весе 19, 5 тонн развивал скорость 13 км/ч. Экипаж на этом танке состоял из четырех человек, а вооружение — из четырех пулеметов. Последний, созданный уже в 1918 году, плавающий танк MkI имел вращающуюся башню, экипаж из четырех человек и вооружение из трех пулеметов. При весе в 13, 5 тонн он развивал на суше скорость 43 км/ч, а на воде — 5 км/ч. Всего англичане изготовили за годы войны 3000 танков 13 различных модификаций.

Постепенно танки были приняты на вооружение и другими воюющими армиями. Первые французские танки были разработаны и выпущены фирмой " Шнейдер" в октябре 1916 года. Внешне они мало походили на своих английских собратьев — гусеницы не охватывали корпус, а располагались по его бортам или под ним. Ходовая часть подрессоривалась специальными пружинами, что облегчало работу экипажа. Однако из-за того, что верхняя часть танка сильно нависала над гусеницами, проходимость " Шнейдеров" была хуже, и они не могли преодолевать даже незначительные вертикальные преграды.

Самым лучшим танком Первой мировой войны стал " Рено" FT, выпущенный фирмой " Рено" и имевший вес всего 6 т, экипаж из двух человек, вооружение — пулемет (с 1917 г пушка), максимальную скорость — 9, 6 км/ч.

" Рено" FT стал прообразом танка будущего. На нем впервые нашла свое разрешение компоновка основных узлов, которая до сих пор остается классической: двигатель, трансмиссия, ведущее колесо — сзади, отделение управления — впереди, вращающаяся башня — в центре. На танки " Рено" впервые стали устанавливать бортовые радиостанции, что сразу повысило управляемость танковыми соединениями. Ведущее колесо большого диаметра помогало преодолевать вертикальные препятствия и выбираться из воронок. Танк имел хорошую проходимость и был прост в управлении. В течение 15 лет он служил образцом для многих конструкторов. В самой Франции " Рено" состоял на вооружении до конца 30-х годов, а по лицензии его выпускали еще в 20-ти странах.

Немцы также попробовали освоить новое оружие. С 1917 года фирма " Бремерваген" начала производство танка A7V, однако их массовый выпуск немцы так и не смогли наладить. Их танки участвовали в некоторых операциях, но в количествах, не превышавших нескольких десятков машин.

Напротив, страны Антанты (то есть собственно Англия и Франция) имели к концу войны около 7 тысяч танков. Здесь бронированные машины получили признание и прочно утвердились в системе вооружения. Ллойд-Джордж, английский премьер в годы войны, говорил: " Танк был выдающимся и потрясающим новшеством в области механической помощи войне. Этот окончательный английский ответ на немецкие пулеметы и траншеи без сомнения сыграл очень важную роль в ускорении победы союзников". Танки широко применялись англичанами в боевых действиях. В ноябре 1917 года впервые была проведена массовая танковая атака. В ней участвовали 476 машин при поддержке шести пехотных дивизий. Это был огромный успех нового вида оружия. Стреляя из пушек и пулеметов, танки снесли проволочные заграждения и с ходу преодолели первую линию окопов. Всего за несколько часов англичане продвинулись в глубь фронта на 9 км, потеряв при этом всего 4 тысячи человек. (В предыдущее британское наступление под Ипром, продолжавшееся четыре месяца, англичане потеряли 400 тысяч человек и сумели вклиниться в немецкую оборону всего на 6–10 км). Французы тоже несколько раз массированно использовали танки. Так, в июле 1918 года более 500 французских танков участвовало в бою под Суассоном.

 

78. СИНТЕТИЧЕСКИЙ КАУЧУК

 

Европа впервые узнала о каучуке в XVI веке. Христофор Колумб привез его из Америки вместе со многими другими диковинками. Во время стоянки кораблей у острова Гаити Колумб и его спутники наблюдали игры туземцев в мяч, сделанный из какого-то упругого материала, совершенно неизвестного в Европе. Мячи легко подпрыгивали при ударе о землю, сжимались и снова восстанавливали первоначальную форму. Возвращаясь в Испанию, Колумб взял с собой образцы этого чудесного материала, который и был в дальнейшем известен в Старом Свете под названием " каучук". В переводе с индейского " каучук" означает " слезы дерева". Как стало известно позже, он представлял собой сок, собираемый из надрезов коры тропического дерева — бразильской гевеи. Его брали от дерева, когда гевее исполнялось семь лет: на высоте полметра делали надрез на коре, и когда из-под нее начинал течь белый, как молоко, сок, собирали его в подвешенные чашечки, а потом сливали в большой сосуд. На воздухе сок сравнительно быстро свертывался и превращался в темный смолообразный продукт — каучук.

Европейцы не сразу оценили достоинства этого материала. В течение двух веков они относились к каучуку как к дикарской диковинке. Между тем путешественники, попадавшие в Южную Америку, продолжали доставлять в Европу все новые и новые предметы, изготовленные из каучука. Среди них были бутылки, непромокаемые сапоги и одежда от дождя. Все это было очень любопытно, но не имело практического значения. Только спустя долгое время европейцы нашли для каучука первое применение — стали использовать его в виде стиральных резинок, напоминающих современные школьные ластики.

В конце XVIII века английский химик Макинтош взял патент на изготовление непромокаемых плащей из каучука. Они получили название макинтошей. Плащи, однако, оказались недостаточно хороши для европейского климата при низких температурах они становились твердыми как жесть, а в жару — липкими. После многих опытов нашли способ избегать этих неприятных особенностей каучука путем его вулканизации. (Это важное открытие было сделано в 1839 году американским химиком Гудьиром. ) Обнаружилось, что при нагревании каучука с серой он довольно сильно меняет свои свойства — становится более гибким, упругим и не таким чувствительным к изменению температуры. Этот новый вулканизированный каучук стали называть резиной. Он быстро завоевал популярность, так как оказался чрезвычайно удобен во многих отношениях. Спрос на него рос с каждым годом. Другого схожего с каучуком продукта в природе не существует — он водонепроницаем, обладает электрическими изоляционными свойствами, гибок и способен к очень большим изменениям формы. Под действием внешней силы он может растягиваться в несколько раз и снова сжиматься. Подобной эластичностью не обладает ни одно другое вещество. Вместе с тем он крепок, прочен, устойчив к истиранию и легко обрабатывается. Поэтому резина была и остается идеальным материалом для изготовления автомобильных покрышек, всевозможных приводных ремней, транспортных лент, рукавов, амортизаторов, уплотняющих прокладок, гибкой изоляции и многого другого. Без резины жизнь современного индустриального общества просто невозможна.

С середины XIX века развернулось массовое производство резиновых изделий. Это породило настоящую каучуковую лихорадку. Местности, где произрастали каучуконосные деревья, превратились в объект войн и спекуляций. Дикая гевея вскоре перестала удовлетворять потребности промышленности. Кроме того, добывать каучук в джунглях было тяжелым и дорогостоящим делом. Были сделаны удачные опыты по созданию каучуконосных плантаций. Гевея переселилась в тропики Явы, Суматры, Малайского архипелага. Производство каучука увеличилось в несколько раз, но спрос на него продолжал расти.

В течение ста лет ученый мир искал разгадку тайны каучука, чтобы научиться делать его искусственно химическим путем. Постепенно выяснилось, что натуральный каучук из сока гевеи представляет собой смесь нескольких веществ, однако 9/10 его массы приходится на углеводород полиизопрен с формулой (C5H8)n, где n весьма велико — больше тысячи. Вещества с подобным строением относят к группе высокомолекулярных продуктов — полимеров, которые образуются соединением нескольких, иногда очень многих, одинаковых молекул более простых веществ-мономеров (в данном случае молекул изопрена C5H8). При благоприятных условиях отдельные молекулы-мономеры соединяются друг с другом в длинные и гибкие линейные или разветвленные цепи-нити. Эта реакция образования полимера называется полимеризацией. Она происходит только с органическими веществами, имеющими кратные связи (двойные или тройные). В результате разъединения этих связей и происходит (за счет освободившихся валентностей) соединение отдельных молекул между собой. Кроме полиизопрена в натуральный каучук входят смолоподобные белковые и минеральные вещества. Чистый полиизопрен, очищенный от смол и белков, весьма неустойчив и на воздухе быстро теряет свои ценные технические свойства: эластичность и прочность.

Таким образом, для того чтобы производить искусственный каучук, необходимо было научиться по крайней мере трем вещам: 1) получать изопрен из других веществ; 2) проводить реакцию полимеризации изопрена; 3) обрабатывать полученный каучук подходящими веществами, чтобы защитить его от разложения. Все эти задачи оказались чрезвычайно сложными. В 1860 году английский ученый Вильямс путем сухой перегонки каучука выделил из него изопрен, который оказался легкой подвижной бесцветной жидкостью со своеобразным запахом. В 1879 году французский химик Густав Бушарда, нагревая изопрен и действуя на него соляной кислотой, осуществил обратную реакцию — получил каучукоподобный продукт. В 1884 году английский химик Тилден получил изопрен путем высокотемпературного разложения скипидара. Хотя каждый из этих ученых внес свою лепту в изучение свойств каучука, тайна его синтеза так и осталась в XIX веке неразгаданной — все открытые способы оказались непригодны для промышленного использования или вследствие дороговизны сырья, или из-за малых выходов изопрена, или из-за сложности технических процессов, обеспечивающих протекание реакции.

Но действительно ли изопрен так необходим для производства каучука? Быть может, макромолекулу с подобными же свойствами возможно образовать из других углеводородов? В 1901 году русский химик Кондаков установил, что в каучукоподобное вещество превращается также диметилбутадиен, если оставить его около года стоять в темноте или на рассеянном свету. (Во время Первой мировой войны в Германии, отрезанной от источников натурального каучука, было налажено производство синтетического каучука из диметилбутадиена. Однако изделия из него выходили очень низкого качества, цена же их из-за технических сложностей оказывалась непомерно высокой. После войны этот метил-каучук больше никогда не производился. )

Позже было открыто, что в каучукоподобные вещества могут синтезироваться все углеводороды со скелетом молекулы

 

 | |

—C=C—C=C—

| |

 

Первым членом этого ряда является бутадиен (или дивинил)

 

CH2=CH–CH=CH2

 

Еще в 1914 году англичане Мэтьюс и Стрендж получили очень неплохой каучук из дивинила в присутствии металлического натрия. Но дальше лабораторных опытов их работа не пошла из-за того, что, во-первых, не был найден способ производства дивинила, а во-вторых, не удалось создать установку, которая могла бы синтезировать каучук в заводских условиях. Обе эти проблемы спустя пятнадцать лет были разрешены русским химиком Сергеем Лебедевым.

До Первой мировой войны русские заводы вырабатывали из привозного каучука до 12 тысяч тонн резины. После революции, когда началась индустриализация промышленности, потребности Советского Союза в каучуке многократно возросли. Один корабль требовал 68 т резины, каждый танк — 800 кг, самолет 600 кг, автомобиль — 160 кг. С каждым годом приходилось закупать за границей все больше и больше каучука. Между тем в 1923–1924 годах цена натурального каучука достигала 2400 золотых рублей за тонну. Необходимость платить такие большие деньги, а в еще большей степени зависимость, в которую таким образом попадало от поставщиков молодое Советское государство, ставили перед руководством страны серьезные проблемы. Решить их можно было только одним путем — разработав промышленный способ производства синтетического каучука.

В конце 1925 года ВСНХ объявил международный конкурс на лучший способ получения синтетического каучука. Условия конкурса были достаточно жесткими: каучук должен был быть изготовлен в СССР из продуктов, добываемых в СССР, цена искусственного каучука не могла превышать средней мировой цены за последнее пятилетие. К 1 января 1928 года требовалось доставить в Москву 2 кг готового образца.

Лебедев в то время возглавлял кафедру общей химии в Ленинградском университете. Еще до революции он несколько лет занимался проблемой синтетического каучука и хорошо представлял себе трудности, которые стояли перед всеми участниками конкурса. Тем не менее он решил принять в нем участие. Несколько учеников и студентов согласились помогать ему в работе. Время было очень трудное. Все помощники и сам Лебедев трудились совершенно безвозмездно во внеслужебное время, по вечерам и выходным дням. Чтобы поспеть к сроку, работали с величайшим напряжением. Сложные технологические эксперименты приходилось проводить в самых невыгодных условиях. Не хватало буквально всего. Как вспоминали позже участники этого удивительного предприятия, все необходимое они делали своими руками. Лебедеву приходилось работать не только химиком, но также стеклодувом, слесарем и электромонтером. Для охлаждения при химических процессах нужен был лед — его все вместе заготовляли на Неве. И все-таки дело успешно продвигалось вперед.

В течение предыдущих многолетних исследований Лебедев убедился, что получить синтетический каучук, полностью воспроизводящий свойства натурального, — задача очень сложная и при тех обстоятельствах едва ли достижимая. Он сразу отказался от опытов с изопреном и в качестве исходного материала решил взять дивинил. После исследований Мэтьюса и Стренджа в процессе производства дивинилового (бутадиенового) каучука оставалось еще одно недостающее звено — необходимо было разработать способ производства дивинила из дешевого и легкодоступного сырья. Сначала в качестве такового Лебедев хотел взять нефть, но потом все внимание сосредоточил на спирте. Спирт тогда был самым реальным исходным сырьем. Если бы проблема синтеза дивинила была благополучно разрешена, появилась бы возможность сразу производить каучук в любом необходимом количестве, а это было как раз то, в чем нуждалась страна.

Суть реакции, при которой этиловый спирт разлагается на дивинил, воду и водород (она в общем виде описывается уравнением: 2CH3CH2OH = C4H6 + 2H2O + H2), была Лебедеву понятна. Но большая трудность состояла в подборе подходящего катализатора. Глубоко разобравшись в сути протекающих процессов, Лебедев предположил, что таким катализатором может служить одна из активных природных глин. Во время своего отпуска в Крыму и на Кавказе летом 1927 года он постоянно собирал и изучал образцы глин. В конце концов нужную глину он нашел на Коктебеле. Реакция в ее присутствии дала прекрасный результат. Так, в середине 1927 года был достигнут первый успех — реакция пошла в нужном направлении, и из спирта был получен дивинил.

Следующий процесс — полимеризацию дивинила — Лебедев решил проводить по способу Мэтьюса и Стренджа. Для этого натрий в специальной установке равномерно распределялся по дивинилу, после чего реакция продолжалась в течение 3–5 дней. Однако конечный продукт ее еще не являлся товарным каучуком. Он был пропитан газами, в нем неравномерно распределялся натрий, смесь была нестойкой и на воздухе быстро окислялась, теряя эластичность. Поэтому полученный каучук обрабатывали в мешалке, где он разминался вместе с включенным в него натрием. Затем его смешивали с усилителями, сажей, каолином, магнезией и другими компонентами, которые должны были предохранять каучук от распадения.

Готовый каучук получали ничтожными порциями — всего по несколько грамм в день. Поэтому работа продолжалась буквально до последней минуты. В конце декабря, когда до срока оставались уже считанные дни, синтез 2 кг каучука был окончен, и его срочно отправили в Москву. В феврале 1928 года жюри, рассмотрев все присланные образцы (их, кстати, поступило совсем немного), признало каучук, выращенный в лаборатории Лебедева, наилучшим.

Однако это было только начало. Лабораторные методы часто оказываются неприемлемы в заводских условиях. Лебедеву поручили продолжать исследования и разработать промышленную технологию своего метода производства каучука. Вновь началась кропотливая работа. Правда, теперь средств и возможностей у Лебедева было намного больше. Хорошо понимая важность его работ, правительство предоставило ему все необходимое. Вскоре при Ленинградском университете была создана специальная лаборатория синтетического каучука. В течение года в этой лаборатории была сконструирована и построена опытная установка, которая выдавала по 2–3 кг каучука в сутки. К концу 1929 года была разработана вся технология заводского процесса.

В феврале 1930 года в Ленинграде на Гутуевском острове началось строительство опытного завода. Летом была открыта заводская лаборатория. Оборудованная по личным указаниям Лебедева, она была одной из лучших химических лабораторий того времени и превратилась в настоящий научный центр синтетического каучука. Кроме лаборатории, Лебедев получил в свое распоряжение лучших специалистов, каких только смогли найти. По всем вопросам он мог обращаться лично к секретарю Ленинградского обкома партии Кирову.

Большая трудность заключалась в создании необходимого оборудования. Химическое машиностроение только зарождалось. Заказы распределялись по всем ленинградским заводам, но их выполнение продвигалось медленно, так как не хватало необходимого опыта. Даже сам Лебедев порой затруднялся дать точный технический совет. Тем не менее строительство опытного завода было завершено в январе 1931 года. В феврале на нем были получены первые 250 кг каучука. Это был первый в мире дешевый синтетический каучук, полученный заводским путем. В том же году были заложены три каучуковых завода-гиганта — в Ярославле, Воронеже и Ефремове. Все они были объявлены ударными комсомольскими стройками и возводились с поразительной быстротой. В 1932 году Ярославский завод уже дал первый каучук. Поначалу синтез дивинила в заводских условиях проводился с большим трудом. Вместо простой смеси продуктов разложения спирта, состоящих из дивинила, воды и водорода, получался сложный " винегрет" из 30 компонентов, причем выход дивинила в этой массе не превышал 20–25%. Лебедеву пришлось срочно ехать в Ярославль с группой своих сотрудников помогать налаживать производство. Потом такие же сложности возникли в Воронеже и Ефремове. Весной 1934 года во время поездки на завод в Ефремов Лебедев заразился сыпным тифом и умер вскоре после возвращения в Ленинград. Но дело, которому он положил такое важное основание, крепло и развивалось. Вслед за первыми тремя заводами синтетического каучука были построены несколько новых.

В 1934 году было выпущено 11 тысяч тонн синтетического каучука, в 1935 году — 25 тысяч, в 1936 году — 40 тысяч. В 1937 году доля синтетического каучука в общем объеме резинового производства уже составляла 73%. Сложнейшая в научном и техническом отношении задача была благополучно разрешена.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.