Хелпикс

Главная

Контакты

Случайная статья





100 ВЕЛИКИХ ИЗОБРЕТЕНИЙ 11 страница



В 1815 году Стефенсон построил свой второй паровоз. В этой конструкции он отказался от соединения осей зубчато-колесной передачей. Вертикальные паровые котлы были поставлены прямо над осями, и движение от поршней передавалось непосредственно на ведущие оси, спаренные между собой цепью. В 1816 году был закончен третий паровоз " Киллингуорт". Для него Стефенсон впервые придумал и применил рессоры (до этого котел устанавливался прямо на раму, вследствие чего паровоз буквально вытряхивал душу из машиниста, подпрыгивая на стыках). Одновременно Стефенсон работал над усовершенствованием рельсового пути. В то время широко употреблялись хрупкие чугунные рельсы. При движении тяжелого паровоза они то и дело лопались в стыках. Стефенсон придумал косой стык и взял на него патент. Однако тогда же ему стало окончательно ясно, что до тех пор, пока чугунные рельсы не будут заменены железными, кардинальных улучшений ждать не приходится. Железо было в несколько раз дороже чугуна, и хозяева неохотно шли на строительство таких дорогих дорог. Но Стефенсон доказал, что паровозы выгодно использовать лишь тогда, когда сила их тяги достаточно велика. Для того чтобы паровозы могли возить большие составы и развивать значительные скорости, необходимо решительно, не жалея никаких затрат, перестроить существующие конные дороги, по которым приходилось ездить первым паровозам, в двух отношениях: смягчить уклоны и усилить рельсы. Эти идеи Стефенсону удалось реализовать через несколько лет.

В 1821 году один из шахтовладельцев Дарлингтона Эдгард Пиз основал компанию по строительству железной дороги от Дарлингтона к Стоктону и поручил ее сооружение Стефенсону. Общая длина дороги с боковыми ветками составляла 56, 3 км. Это было значительное по тем временам предприятие, и Стефенсон с увлечением взялся за его осуществление. С большим трудом ему удалось убедить Пиза и его компаньонов уложить на половине длины дороги железные рельсы вместо чугунных, хотя те и стоили в два раза дороже. 19 сентября 1825 года по дороге торжественно прошел первый поезд из 34-х вагонов. Шесть из них были нагружены углем и мукой, на остальных были размещены скамейки для публики. Тащил все эти вагоны новый паровоз " Передвижение", которым управлял сам Стефенсон. Под звуки музыки и веселые возгласы пассажиров поезд успешно прошел до Стоктона. Средняя скорость его была 10 км/ч. Впереди локомотива скакал верховой с флагом, прося публику освободить рельсы. На отдельных участках ему приходилось мчаться во весь опор, потому что поезд разгонялся до 24 км/ч. Всего за этот рейс было перевезено более 600 пассажиров. Вместе с остальным грузом эта публика весила около 90 т.

В связи с успешным строительством Дарлингтон-Стоктонской дороги имя Стефенсона стало широко известно. В 1826 году совет директоров транспортной компании Манчестер-Ливерпульской дороги предложил Стефенсону пост главного инженера с окладом в 1000 фунтов стерлингов. Строительство этой дороги представляло большую сложность, поскольку она проходила по сильнопересеченной местности. Пришлось возводить множество разнообразных искусственных сооружений: насыпи, выемки, туннели и т. п. Одних мостов было построено 63. Под самым Ливерпулем надо было проложить туннель длиной 2, 4 км в скальном грунте. Потом пришлось сделать выемку в высокой песчаной скале (всего во время этой работы было удалено 480 тыс. куб. м камня). Особенно большие трудности представляло сооружение полотна через торфяные болота Чэт-Мосс, шириной 6, 5 км и глубиной 15 м. Общая стоимость работ вскоре превысила все предварительные сметы, а Стефенсон между тем настойчиво требовал, чтобы вместо дешевых чугунных рельс были уложены дорогие железные. Ему потребовались все его красноречие и весь его авторитет, чтобы доказать директорам: именно так, а не иначе следует строить железные дороги.

Наконец, все препятствия были благополучно преодолены. В 1829 году, когда дорога близилась к своему завершению и надо было уже думать о подвижном составе, компания объявили свободный конкурс на лучшую конструкцию локомотива. Возле Рейнхилла был выделен новый участок длиной 3 км. Паровозы, участвовавшие в состязаниях, должны были пройти эту дистанцию 20 раз. Стефенсон выставил в Рейнхилле свой новый паровоз " Ракета", построенный на его заводе по последнему слову тогдашней техники. Еще в 1826 году он разработал конструкцию локомотива с наклонным цилиндром (впервые она была опробована на паровозе " Америка" ). Это позволяло уменьшить вредное пространство в цилиндрах, что при вертикальном их расположении являлось весьма важным. Был также значительно усовершенствован паровой котел и впервые были применены дымогарные трубки, о которых надо сказать подробнее. Вообще, паровой котел был одним из важнейших узлов паровоза, от которого во многом зависели его технические характеристики. К нему предъявлялся целый ряд требований: при незначительном расходе угля и воды он должен был давать возможно большее количество упругого пара. Этого эффекта можно было достичь, прежде всего, увеличивая площадь соприкосновения между водой и горячими газами.

На ранних паровозах использовался простой цилиндрический котел. Здесь D — колпак, куда собирается пар, проводимый к паровым клапанам по одной из трубок B (другая соединялась с предохранительным клапаном). Котел имел наклонную решетку R, через которую атмосферный воздух доставлялся к углю, насыпаемому через воронку T. Уголь скользил по воронке вниз по мере сгорания, причем самое сильное горение происходило внизу решетки; пламя оттуда поднималось под наклонным сводом G, где имелось отверстие b, через которое горячие газы поступали в первый дымоход F под котлом. Затем эти газы попадали в c и в боковой дымоход F, а через соединение d на передней стороне проходили по F снова в заднюю часть котла, откуда уже вылетали в дымовую трубу. Таким образом, котел как бы со всех сторон обтекался горячим воздухом. Зольная дверца K и задвижка S были простыми приспособлениями, с помощью которых кочегар регулировал доступ воздуха в топку.

Простейшим видоизменением цилиндрического котла стал котел с жаровой трубой, в котором первый дымоход проходил не под котлом, а внутри него.

Следующим шагом явился трубчатый котел, изобретенный в 1828 году французским инженером Сегеном. Внутри этого котла проходили металлические дымогарные трубы, по которым из топки в дымовую трубу двигался горячий газ. В трубчатом котле поверхность нагрева была значительно больше, чем в цилиндрическом. При этом гораздо большая часть теплоты шла на парообразование и сравнительно меньшая улетала в трубу. На " Ракете" общая поверхность нагрева котла составляла около 13 квадратных метров, из которых на трубки приходилось 11. Поэтому при тех же габаритах производительность котла была значительно больше.

Рейнхильские состязания стали крупным событием в истории паровоза; считается, что ими закончился период его детства. На состязаниях присутствовало около 10 тысяч зрителей, и это лучше всего говорит об огромном интересе простой публики к паровому транспорту. Надежды, которые Стефенсон возлагал на свое творение, полностью оправдались. 10 октября " Ракета", идя порожняком, развила рекордную для тех времен скорость 48 км/ч. При собственном весе 4, 5 т этот паровоз свободно тянул поезд общим весом 17 т со скоростью 21 км/ч. Скорость движения паровоза с одним пассажирским вагоном достигала 38 км/ч. По всем показателям " Ракета" оказалась на порядок лучше всех других локомотивов, и приз в 500 фунтов стерлингов был вручен Стефенсону. Он разделил его со своим помощником Бутом, предложившим идею трубчатого котла (ни Бут, ни сам Стефенсон в то время еще ничего не знали об изобретении Сегена). " Ракету" можно считать уже вполне совершенным паровозом, так как она имела все важнейшие черты позднейших локомотивов: 1) топка была окружена водой котла; 2) котел был расположен горизонтально и имел дымогарные трубы; 3) пар уходил в дымовую трубу, что усиливало тягу и увеличивало температуру топки; 4) сила пара передавалась колесам через шатуны без всяких зубчатых передач.

В следующем году линия Ливерпуль — Манчестер была торжественно открыта. Строительство дороги потребовало неслыханных по тем временам капиталовложений. Общие затраты на ее прокладку составили 739 тысяч фунтов стерлингов. Однако потребность в этой дороге была настолько велика, что она окупилась достаточно быстро. Это было лучшей рекомендацией новому виду транспорта. Через несколько лет по всему миру развернулось бурное железнодорожное строительство. Началась эра паровоза. Значение Ливерпуль-Манчестерской дороги в этом процессе трудно переоценить — она была первым в истории крупным, технически правильно осуществленным проектом железнодорожного строительства. Многие находки Стефенсона, касавшиеся устройства насыпей, строительства дамб и туннелей, укладки рельсов и шпал и пр., сделались потом образцом для других инженеров.

Масштабные перемены, вызванные широким распространением паровозов, были настолько огромны, что можно сказать без преувеличения — они изменили облик мира. До изобретения железных дорог важнейшие промышленные города лежали у морского побережья или на судоходных реках. Главным транспортным средством служили парусные суда. Внутри страны перевозка грузов происходила гужевым транспортом, причем во всех странах дороги находились в очень скверном состоянии. При отсутствии дорог не могла развиваться промышленность. Многие территории, имевшие полезные ископаемые, были тем не менее обречены на бездеятельность. Переход к паровому транспорту привел к значительному увеличению скорости передвижения и грузооборота, при том, что цена перевозки заметно снизилась. Самые отдаленные местности оказались вскоре связаны железными дорогами с промышленными центрами, портами и источниками сырья, вовлечены в общий ритм экономической жизни. Расстояние перестало быть препятствием, и промышленность получила мощный стимул к своему развитию.

 

36. ВИНТОВКА

 

Ручное огнестрельное оружие появилось еще в XIII–XIV веках, но долгое время оно служило лишь дополнением к холодному оружию. Прошло много лет, прежде чем ружья сделались пригодными для вооружения всей пехоты, и только в начале XVIII века кремневый гладкоствольный мушкет со штыком, стрелявший круглыми пулями, окончательно вытеснил пику. Впрочем, и тогда ручное огнестрельное оружие оставалось далеким от совершенства: мушкеты были тяжелы и громоздки, заряжались с дула и имели небольшую скорострельность (примерно, один выстрел в минуту). В 1807 году шотландец Форзич изобрел ружейный замок, в котором выстрел вызывался воспламенением гремучего состава от удара стального штифта. Это было громадным шагом вперед, так как кремневое ружье давало 30% осечек даже в сухую погоду. В 1815 году англичанин Эгг придумал медные пистоны, наполненные смесью из охотничьего пороха и хлорноватистого калия. В 1821 году Райт ввел в употребление медные пистоны, наполненные гремучей смесью. Однако все эти нововведения не могли увеличить ни скорострельности мушкета, ни убойной силы его выстрела.

Между тем еще в конце XV века в Германии появилось первое нарезное оружие — винтовка. Стволы ружей стали снабжать внутри желобками, в которых скоплялась грязь после горения пороха. Эти желобки, изобретение которых в 1480 году приписывают Цольнеру из Вены, шли сначала параллельно оси ружья. Примерно в 1630 году опытным путем было установлено, что пуля, которой в стволе придано вращательное движение, летит значительно дальше и попадает гораздо точнее, чем пуля, выпущенная из гладкоствольного ружья. Чтобы сообщить пуле вращение, нарезам внутри ствола стали придавать винтообразную форму. Так внутренний канал ствола превратился в своего рода гайку. Однако такие важные достоинства винтовки, как точность и дальнобойность, сопровождались весьма ощутимым недостатком, поскольку забивание пули в канал ствола через винтовые нарезы было утомительной и трудной операцией. В результате даже опытный стрелок мог делать из винтовки не более одного выстрела в пять минут. Из-за этого в течение двух веков винтовка оставалась непригодной для широкого применения в армии, особенно в XVIII веке, когда все сражение порой решалось частым огнем развернутых линий. К тому же, чтобы ускорить заряжание, винтовку снабжали слишком коротким стволом, и она уже не годилась для штыкового боя. Все это время винтовка оставалась почти исключительно охотничьим оружием.

Естественным образом возникла задача: каким образом соединить достоинства винтовки с легкостью заряжания гладкоствольного ружья? Сперва попробовали делать пули несколько меньшего диаметра, чем внутренний канал ствола. Такая пуля легко проходила через нарезы, но образовавшийся зазор оказывал крайне вредное влияние — во время выстрела через него с силой прорывались газы, пуля получала недостаточную начальную скорость, и полезные качества винтовки во многом терялись. Французский офицер Дельвинь придумал способ исправлять это неудобство, меняя форму пули. В 1828 году он сконструировал винтовку с каморой в казенной части, более узкой, чем весь ствол. Прежде всего во время заряжания в камору всыпался порох, вслед за ним вкатывалась пуля меньшего диаметра, чем канал ствола; дойдя до края каморы, она не могла пройти дальше и оставалась на месте, упираясь в ее края, нескольких ударов молотком по шомполу было достаточно для того, чтобы вогнать мягкий свинец пули в нарезы и расширить ее диаметр настолько, что она оказывалась вплотную пригнана к стенкам ствола. При первых же испытаниях обнаружилось величайшее неудобство этой системы — пуля от ударов теряла свою сферическую форму и делалась несколько сплющенной, теряла винтообразное вращение, приданое ей нарезами, а значит, существенно уменьшалась меткость стрельбы. Тогда Дельвинь решил вовсе отказаться от сферических пуль и предложил делать их продолговатыми (цилиндрическо-коническими). Это изобретение было особенно важным. Сама винтовка Дельвиня так и не получила широкого распространения, но найденная им форма пули оказалась чрезвычайно удачной и вскоре повсеместно вытеснила прежнюю сферическую. Действительно, продолговатая пуля имела множество преимуществ перед круглой: пройдя в момент выстрела через нарезы, она начинала вращаться вокруг продольной оси и летела острым концом вперед. Благодаря этому ее трение о воздух было намного меньше, чем у сферической пули того же диаметра. Она летела дальше и имела гораздо более пологую траекторию. В то же время продолговатая пуля лучше входила в каналы ствола, что позволяло уменьшить крутизну и глубину нарезки. Имея значительно больший вес, чем сферическая пуля, такая пуля вылетала из ствола с той же скоростью. Другими словами, убойная сила винтовки, заряженной пулей Дельвиня, заметно возросла, а калибр ее остался прежним.

Другая идея Дельвиня — относительно того, что пуля должна менять свой диаметр уже после того, как дошла до конца ствола, — тоже была использована, но в более рациональном виде. Главное неудобство винтовки Дельвиня заключалось в том, что после расплющивания пуля отчасти зацеплялась своими краями за круговой выступ каморы, и это ослабляло силу выстрела. Французский полковник Тувенн в 1844 году придумал, как избежать этого неудобства. Он удалил выступы каморы и сделал канал ствола, как и раньше, одинаковым по всей его длине. В центре болта, запиравшего канал ствола, он укрепил короткий, крепкий стальной стержень, или чеку, вокруг которой ложился высыпанный порох. Во время зарядки пуля, имевшая меньший диаметр, чем канал ствола, легко прогонялась шомполом через нарезы. В конце ствола она попадала на чеку, раздавалась в ширину и плотно прилегала к стенкам ствола, причем расширение было гораздо более правильным, чем в винтовке Дельвиня. В короткое время винтовка Тувенна получила широкое распространение, и до конца 40-х годов XIX века ее приняли на вооружение не только во Франции, но во многих государствах Северной Германии. Вскоре, однако, оказалось, что эта винтовка тоже имеет большие недостатки: усилие, которое должен был прилагать солдат для того, чтобы расплющить пулю, оставалось очень большим, а при стрельбе с колена или лежа это было еще и очень неудобно. Винтовка имела сильную отдачу, к тому же чека затрудняла чистку ствола и часто ломалась.

В 1849 году капитан Минье предложил усовершенствование, которое позволяло избежать этих неудобств. Он обнаружил, что если в пуле сделать углубление, то газ, образующийся при выстреле, стремится расширить стенки этой полости настолько, чтобы заставить ее плотно прилегать к стволу и войти в нарезы. На использовании этого эффекта целиком была построена идея Минье. Он устранил чеку на дне канала ствола и восстановил ту первоначальную простоту винтовки, которой она отличалась до Дельвиня и Тувенна. Зато в пуле стали высверливать конусообразный вырез со стороны основания. В момент выстрела она расширялась и плотно прилегала к стенкам ствола. Эффект, достигнутый таким простым усовершенствованием, оказался поразительным: новая винтовка заряжалась так же легко, как гладкоствольный мушкет, но была гораздо лучше старой винтовки, превосходя ее дальностью и меткостью стрельбы. Поэтому винтовка Минье была первым нарезным оружием, которое получило всеобщее распространение в Европе. Этому в немалой степени способствовало также то обстоятельство, что все старые гладкоствольные мушкеты при помощи очень простой переделки могли быть превращены в винтовки, пригодные к использованию пули Минье. Например, в Пруссии меньше чем за год были сделаны нарезы у 300 тысяч старых мушкетов. Вслед за Францией винтовку Минье в различных местных модификациях приняли на вооружение в Англии, Бельгии, Испании, Швейцарии, Германии, а потом и в России.

Однако к тому времени, когда винтовка Минье получила столь большой успех, уже появилось изобретение, направившее развития огнестрельного оружия по совершенно иному пути. Пока другие старались изменить форму пули, не меняя принципиально устройство самой винтовки (она по-прежнему оставалась шомпольным ружьем, заряжавшимся с дула), прусский оружейный мастер Дрейзе трудился над созданием важного дополнения к винтовке — он создавал затвор. Появление затвора составило эпоху в военном деле, и Дрейзе по праву имеет славу одного из величайших механиков в истории военной техники. Хотя нельзя сказать, что идея этого устройства целиком принадлежит ему, именно он впервые нашел разрешение сложнейшей инженерной задачи — создал винтовку, заряжавшуюся с казенной части. Многие предшественники Дрейзе на этом пути (первые попытки создать затвор относятся еще к средневековью) потерпели неудачу прежде всего потому, что не имели в своем распоряжении высокоточных металлорежущих станков. Ведь соединение затвора со стволом должно быть прочным и выдерживать огромное давление пороховых газов. Вместе с тем затвор должен легко двигаться и быстро устанавливаться на место. Другими словами, он мог работать только при самых незначительных допусках в отклонении от нормальных размеров деталей — не более тысячных долей миллиметра. Долгое время эти трудности казались непреодолимыми, и лишь технические возможности XIX века позволили достойно разрешить их. В этом смысле скользящий затвор был детищем своего времени. Однако то, что Дрейзе имел в своем распоряжении высокоточный токарный станок, ни в коей мере не умаляет его славы как изобретателя устройства, остающегося и по сей день важнейшей принадлежностью любого стрелкового оружия.

Первый шаг к созданию новой винтовки Дрейзе сделал еще в 1828 году, когда придумал так называемый унитарный патрон для гладкоствольного игольчатого ружья. Это сразу позволило увеличить его скорострельность. До этого процесс заряжания включал в себя много различных операций: засыпание пороха, проталкивание пули, установку пистона. Дрейзе придумал поместить пороховой заряд, пулю и капсюль в бумажную оболочку — гильзу. Заряжание после этого свелось только к двум операциям: извлечению стреляной гильзы и вкладыванию патрона в ствол. Разбивание запала в ружье Дрейзе производилось иглой, проникавшей через отверстие в казенной части.

В 1836 году Дрейзе увенчал свою многолетнюю работу созданием игольчатой винтовки со скользящим затвором, которая заряжалась с казенной части. Сконструированный им затвор представлял собой цилиндрическую коробку, привинченную к казенной части ствола, в которой взад и вперед двигался поршень. Внутри этого поршня-затвора так же свободно двигалась прочная игла, игравшая роль ударника.

При открывании затвора надо было сначала отодвинуть назад иглу c. Потом повернуть рычаг d затвора влево и отодвинуть его назад — тогда открывалось сквозное отверстие (патронное окно), куда вкладывался патрон. Затем затвор устанавливали на место (при этом патрон досылался в канал ствола) и снова поворачивали его. Рычаг d попадал в специальный вырез в стенке коробки, и затвор наглухо запирал канал ствола. Постановка оружия на боевой взвод состояла в простом оттягивании назад иглы c. При этом взводился курок, удерживавший пружину в боевом положении. При нажатии на курок пружинный механизм спускался, причем игла с силой вонзалась в патрон и воспламеняла капсюль. Таким образом, с введением затвора заряжение винтовки свелось к пяти простым движениям, которые можно было делать в любом положении и даже на ходу. В 1840 году игольчатая винтовка Дрейзе уже была принята на вооружение прусской армией. Однако широкое распространение игольчатые ружья получили лишь двадцатью годами позже — во время гражданской войны в США и франко-прусской войны. Их применение привело к коренному изменению тактики боя. На смену сомкнутым колоннам везде пришли развернутые цепи.

Созданием игольчатого ружья был сделан огромный шаг в развитии стрелкового оружия, которое только после этого стало обретать свой современный вид. Впрочем, винтовка Дрейзе имела и свои недостатки: бумажные патроны быстро отсыревали, игла была достаточно уязвимой частью механизма и ломалась. Эти неудобства были устранены после введения в 70-х годах XIX века унитарного патрона с металлической гильзой и капсюлем, который воспламенялся от удара бойком.

 

37. ФОТОГРАФИЯ

 

Среди многих удивительных изобретений, сделанных в XIX веке, далеко не последнее место занимает фотография — искусство, позволившее делать моментальное изображение любого предмета или ландшафта. Фотография зародилась на границе двух наук: оптики и химии, ведь для получения отпечатков нужно было разрешить две сложные задачи. Во-первых, необходимо было иметь особую светочувствительную пластинку, способную воспринимать и удерживать на себе изображение. Во-вторых, нужно было найти специальный прибор, который бы четко проецировал изображение снимаемых объектов на эту пластинку. И то и другое удалось создать лишь после многих проб и ошибок. Чудо фотографии не сразу далось людям в руки, и в разное время многие изобретатели из разных стран с увлечением занимались этой проблемой.

Подходы к ней можно найти еще в работах средневековых алхимиков. Один из них, Фабрициус, смешал однажды в своей лаборатории поваренную соль с раствором азотнокислого серебра и получил молочно-белый осадок, который чернел от солнечного света. Фабрициус исследовал это явление и в своей книге о металлах, изданной в 1556 году, сообщил, что при помощи линзы получил изображение на поверхности осадка, известного теперь под названием хлористого серебра, и что изображение это становилось черным или серым в зависимости от продолжительности освещения его солнечными лучами. Это был первый опыт в истории фотографии. В 1727 году врач из Галле Иоганн Шульц делал в солнечный день опыты с раствором азотнокислого серебра и мелом, смесь которых он освещал в стеклянном сосуде. Когда сосуд выставляли на солнечный свет, поверхность смеси тотчас чернела. При встряхивании раствор опять становился белым. Посредством кусочков бумаги Шульц получал на поверхности жидкости силуэты, посредством взбалтывания уничтожал их и получал новые узоры. Эти оригинальные опыты казались ему только забавой, и прошло еще сто лет, прежде чем подмеченное им свойство хлористого серебра додумались использовать при изготовления фотографических пластин.

Следующая страница в истории фотографии связана с именем Томаса Веджвуда. Он клал на бумагу, увлажненную раствором азотнокислого серебра, листья растений. При этом покрытая листьями часть бумаги оставалась светлой, освещенная же часть чернела. Результатом этого опыта был белый силуэт на черном фоне. Однако эти изображения можно было рассматривать только при свете свечи, так как при попадании солнечных лучей они портились. Веджвуд попробовал пропитать раствором кожу и установил, что изображения на ней появляются быстрее. (В то время этот феномен остался необъясненным. Только в конце 30-х годов XIX века было установлено, что дубильная кислота, содержавшаяся в коже, значительно ускоряет проявление изображения. ) В 1802 году Веджвуд опубликовал результаты своих опытов. Постепенно он научился получать контурные изображения на бумаге, коже и стекле в течение трех минут — при экспозиции их на солнце, и в течение нескольких часов — при выдержке их в тени. Но эти снимки не переносили солнечного света, так как они не были зафиксированы. Только в 1819 году Джон Гершель нашел вещество, которое укрепляло фотографическое изображение. Им оказался серноватистокислый натр. Казалось бы, фотографии оставалось сделать последний шаг для того, чтобы состояться полностью как искусству, но этот шаг был сделан только через двадцать лет. А пока что поиски изобретателей пошли по другому пути.

В 1813 году к опытам с фотографическими пластинками приступил французский художник Ньепс, которому принадлежит главная заслуга в изобретении фотоаппарата. Около 1816 года он пришел к идее получать изображение предметов с помощью так называемой камеры-обскуры. Эта камера была известна еще в древности. В простейшей форме она представляет собой плотно закрытый со всех сторон светонепроницаемый ящик с небольшим отверстием. Если стенка, противоположная отверстию, будет из матового стекла, то на ней получается перевернутое изображение находящихся перед камерой предметов. Чем меньше отверстие, тем резче контуры изображения и тем оно слабее. В продолжение столетий эффекты, наблюдаемые в камере-обскуре, восхищали любителей природы. В 1550 году Кардан устроил в Нюрнберге камеру с большим отверстием, в котором находилась линза. Таким образом он получил более яркое и более четкое изображение. Это было важное усовершенствование, поскольку линза хорошо собирала лучи и значительно улучшала наблюдаемый эффект. Именно такой темный ящик с очень маленьким отверстием и линзой на одной стороне и светочувствительной пластинкой на другой Ньепс решил использовать для проекции изображения. Это был первый в истории фотоаппарат.

В 1824 году Ньепсу удалось разрешить задачу закрепления изображений, получаемых в камере-обскуре. В отличие от своих предшественников он работал не с хлористым серебром, а делал эксперименты с горной смолой, которая под действием света имеет способность изменять некоторые свои свойства. Например, на свету она переставала растворяться в некоторых жидкостях, в которых растворялась в темноте. Покрыв слоем горной смолы медную пластинку, Ньепс вставлял ее в камеру-обскуру и помещал в фокус увеличительного стекла. После довольно продолжительного действия света пластинку вынимали и погружали в смесь нефти с лавандовым маслом. На местах, содержащих действие света, горная смола оставалась нетронутой, а на остальных она растворялась в смеси. Таким образом, места, полностью покрытые смолой, представляли освещенные места, а покрытые лишь отчасти — полутени. На получение рисунка требовалось не менее 10 часов, так как смола изменялась под действием света очень медленно.

Понятно, что этот способ трудно было назвать совершенным, и Ньепс продолжал поиски. В 1829 году он объединил свои усилия с Луи-Жаком Дагером, бывшим офицером, декоратором при парижском театре, работавшим над теми же проблемами. Вскоре он умер, и Дагер продолжал исследования один. Он уже имел в своем распоряжении фотоаппарат, изобретенный Ньепсом, но все еще не знал, каким образом получить светочувствительную пластину. Целый ряд удивительных совпадений навел его в конце концов на верный путь. Однажды Дагер случайно положил серебряную ложку на металл, покрытый йодом, и заметил, что на металле получилось изображение ложки. Тогда он взял полированную серебряную пластинку и подверг ее действию йодистых паров, чтобы получить таким образом йодистое серебро. На пластинку он положил один из фотографических снимков Ньепса. Через некоторое время на ней образовалась копия снимка, но очень неясная, так что ее можно было различить лишь с трудом. Тем не менее это был важный результат, открывший фотографические свойства йодистого серебра. Дагер стал искать способ, с помощью которого можно было бы проявлять полученные изображения. Другой счастливый случай привел к неожиданному успеху. Однажды Дагер взял из темной комнаты оставленную там пластинку, с которой работал накануне, и к великому удивлению увидел на ней слабый снимок. Он предположил, что какое-то вещество подействовало на пластинку и проявило за ночь невидимое накануне изображение. В темной комнате находилось много химических веществ. Дагер принялся за поиски. Каждую ночь он клал новую пластинку в кладовку и каждое утро убирал ее оттуда вместе с одним из химических реактивов. Он повторял эти опыты до тех пор, пока не удалил из комнаты все химикаты, и положил новую пластинку уже на пустую полку. К его удивлению, утром эта пластинка тоже оказалась проявленной. Он тщательно обследовал комнату и нашел в ней немного пролитой ртути: пары ее и были химическим проявителем. После этого Дагер мог уже без всякого труда разработать все детали фотографического процесса — с помощью фотоаппарата он получал слабые изображения на пластинках, покрытых йодистым серебром, а затем проявлял их парами ртути. В результате выходили замечательно четкие изображения предметов со всеми мелкими деталями и полутонами. Многолетние поиски завершились замечательным открытием.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.