Хелпикс

Главная

Контакты

Случайная статья





Домашняя работа 1



1. Килограмм орехов стоит 75 рублей. Маша купила 4 кг 400 г орехов. Сколько рублей сдачи она должна получить с 350 рублей?

2. Поезд Казань-Москва отправляется в 21: 35, а прибывает в 10: 35 на следующий день (время московское). Сколько часов поезд находится в пути?

4. Таксист за месяц проехал 6000 км. Стоимость 1 литра бензина — 20 рублей. Средний расход бензина на 100 км составляет 9 литров. Сколько рублей потратил таксист на бензин за этот месяц?

5. Летом килограмм клубники стоит 80 рублей. Мама купила 1 кг 200 г клубники. Сколько рублей сдачи она получит с 500 рублей?

7. На счету Машиного мобильного телефона было 53 рубля, а после разговора с Леной осталось 8 рублей. Сколько минут длился разговор с Леной, если одна минута разговора стоит 2 рубля 50 копеек?

8. Выпускники 11а покупают букеты цветов для последнего звонка: из 3 роз каждому учителю и из 7 роз классному руководителю и директору. Они собираются подарить букеты 15 учителям (включая директора и классного руководителя), розы покупаются по оптовой цене 35 рублей за штуку. Сколько рублей стоят все розы?

9. Показания счётчика электроэнергии 1 ноября составляли 12 625 кВт·ч, а 1 декабря — 12 802 кВт·ч. Сколько нужно заплатить за электроэнергию за ноябрь, если 1 кВт·ч электроэнергии стоит 1 рубль 80 копеек? Ответ дайте в рублях.

10. Маша отправила SMS-сообщения с новогодними поздравлениями своим 16 друзьям. Стоимость одного SMS-сообщения 1 рубль 30 копеек. Перед отправкой сообщения на счету у Маши было 30 рублей. Сколько рублей останется у Маши после отправки всех сообщений?

13. На автозаправке клиент отдал кассиру 1000 рублей и залил в бак 28 литров бензина по цене 28 руб. 50 коп. за литр. Сколько рублей сдачи он должен получить у кассира?

15. В квартире, где проживает Алексей, установлен прибор учёта расхода холодной воды (счётчик). 1 сентября счётчик показывал расход 103 куб. м воды, а 1 октября — 114 куб. м. Какую сумму должен заплатить Алексей за холодную воду за сентябрь, если цена 1 куб. м холодной воды составляет 19 руб. 20 коп.? Ответ дайте в рублях.

16. Рост человека 6 футов 1 дюйм. Выразите его рост в сантиметрах, если 1 фут равен 12 дюймам. Считайте, что 1 дюйм равен 2, 54 см. Результат округлите до целого числа сантиметров.

17. Бегун пробежал 50 м за 5 секунд. Найдите среднюю скорость бегуна на дистанции. Ответ дайте в километрах в час.

18. В книге Елены Молоховец «Подарок молодым хозяйкам» имеется рецепт пирога с черносливом. Для пирога на 10 человек следует взять 1/10 фунта чернослива. Сколько граммов чернослива следует взять для пирога, рассчитанного на 3 человек? Считайте, что 1 фунт равен 0, 4 кг.

19. Система навигации самолёта информирует пассажира о том, что полёт проходит на высоте 37 000 футов. Выразите высоту полёта в метрах. Считайте, что 1 фут равен 30, 5 см.

20. Стоимость полугодовой подписки на журнал составляет 460 рублей, а стоимость одного номера журнала — 24 рубля. За полгода Аня купила 25 номеров журнала. На сколько рублей меньше она бы потратила, если бы подписалась на журнал?

21. В магазине вся мебель продаётся в разобранном виде. Покупатель может заказать сборку мебели на дому, стоимость которой составляет 10% от стоимости купленной мебели. Шкаф стоит 3300 рублей. Во сколько рублей обойдётся покупка этого шкафа вместе со сборкой?

22. На бензоколонке один литр бензина стоит 32 руб. 60 коп. Водитель залил в бак 30 литров бензина и купил бутылку воды за 48 рублей. Сколько рублей сдачи он получит с 1500 рублей?

23. Установка двух счётчиков воды (холодной и горячей) стоит 3300 рублей. До установки счётчиков за воду платили 800 рублей ежемесячно. После установки счётчиков ежемесячная оплата воды стала составлять 300 рублей. Через какое наименьшее количество месяцев экономия по оплате воды превысит затраты на установку счётчиков, если тарифы на воду не изменятся?

Упражнение 2

1.     2. . 3.    4.

 5.    6. 7. 8.. 10.    11.    12.       13.  15.

16.  17.   19. . 20. . 21. . 22. . 23.    24. 25.   26.   27.

 28.   29.   30 31. . 32. .

33.   34.   35. . 36. . 37.   38.   39. . 40. . 41.   42. .

Упражнение 3

.

4 · 72 + 6 · 72.

4 · 10-3 + 8 · 10-2 + 5 · 10-1. 9 · 10-2 + 4, 5 · 10-1. (0, 01)2 · 105: 4− 2  3, 4 · 102 + 1, 8 · 103. . . . . . . .    . .

.

. . . .

34. + 35. 36. 1, 6 · 102 * 4 · 10− 2. 37. .

38. + . 39. .    42. + .

 

 . : . .: . . . . . . .

: . . .

 

Упражнение 4

7. В сосуд, содержащий 5 литров 12–процентного водного раствора некоторого вещества, добавили 7 литров воды. Сколько процентов составляет концентрация получившегося раствора?

8. Смешали некоторое количество 15–процентного раствора некоторого вещества с таким же количеством 19–процентного раствора этого вещества. Сколько процентов составляет концентрация получившегося раствора?

10. Изюм получается в процессе сушки винограда. Сколько килограммов винограда потребуется для получения 20 килограммов изюма, если виноград содержит 90% воды, а изюм содержит 5% воды?

11. Имеется два сплава. Первый содержит 10% никеля, второй — 30% никеля. Из этих двух сплавов получили третий сплав массой 200 кг, содержащий 25% никеля. На сколько килограммов масса первого сплава была меньше массы второго?

15. Клиент А. сде­лал вклад в банке в раз­ме­ре 7700 рублей. Про­цен­ты по вкла­ду на­чис­ля­ют­ся раз в год и при­бав­ля­ют­ся к те­ку­щей сумме вклада. Ровно через год на тех же усло­ви­ях такой же вклад в том же банке сде­лал кли­ент Б. Еще ровно через год кли­ен­ты А. и Б. за­кры­ли вкла­ды и за­бра­ли все на­ко­пив­ши­е­ся деньги. При этом кли­ент А. по­лу­чил на 847 рублей боль­ше кли­ен­та Б. Какой про­цент го­до­вых на­чис­лял банк по этим вкладам?

16. Имеется два сосуда. Первый содержит 100 кг, а второй — 20 кг раствора кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 72% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 78% кислоты. Сколько килограммов кислоты содержится в первом сосуде?

21По двум па­рал­лель­ным железнодорожным путям друг нав­стре­чу другу сле­ду­ют скорый и пас­са­жир­ский поезда, ско­ро­сти которых равны со­от­вет­ствен­но 65 км/ч и 35 км/ч. Длина пас­са­жир­ско­го поезда равна 700 метрам. Най­ди­те длину ско­ро­го поезда, если время, за ко­то­рое он про­шел мимо пас­са­жир­ско­го поезда, равно 36 секундам. Ответ дайте в метрах.

25. Два человека отправляются из одного дома на прогулку до опушки леса, находящейся в 4, 4 км от дома. Один идёт со скоростью 2, 5 км/ч, а другой — со скоростью 3 км/ч. Дойдя до опушки, второй с той же скоростью возвращается обратно. На каком расстоянии от дома произойдёт их встреча? Ответ дайте в километрах.

17. Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 74 км/ч, а вторую половину времени – со скоростью 66 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

18. Первую треть трассы автомобиль ехал со скоростью 60 км/ч, вторую треть – со скоростью 120 км/ч, а последнюю – со скоростью 110 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути. Ответ дайте в км/ч.

1. Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой равна 14 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 21 км/ч больше скорости другого?

2. Из одной точки круговой трассы, длина которой равна 14 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 80 км/ч, и через 40 минут после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

3. Из пункта A круговой трассы выехал велосипедист. Через 30 минут он еще не вернулся в пункт А и из пункта А следом за ним отправился мотоциклист. Через 10 минут после отправления он догнал велосипедиста в первый раз, а еще через 30 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч..

4. Часы со стрел­ка­ми по­ка­зы­ва­ют 8 часов 00 минут. Через сколь­ко минут ми­нут­ная стрел­ка в чет­вер­тый раз по­рав­ня­ет­ся с часовой?

5. Два гон­щи­ка участ­ву­ют в гонках. Им пред­сто­ит про­ехать 60 кругов по коль­це­вой трас­се протяжённостью 3 км. Оба гон­щи­ка стар­то­ва­ли одновременно, а на финиш пер­вый пришёл рань­ше вто­ро­го на 10 минут. Чему рав­ня­лась сред­няя ско­рость вто­ро­го гонщика, если известно, что пер­вый гон­щик в пер­вый раз обо­гнал вто­ро­го на круг через 15 минут? Ответ дайте в км/ч.

4. На пост главы ад­ми­ни­стра­ции го­ро­да пре­тен­до­ва­ло три кан­ди­да­та: Жу­равлёв, Зай­цев, Ива­нов. Во время вы­бо­ров за Ива­но­ва было от­да­но в 2 раза боль­ше го­ло­сов, чем за Жу­равлёва, а за Зай­це­ва — в 3 раза боль­ше, чем за Жу­равлёва и Ива­но­ва вме­сте. Сколь­ко про­цен­тов го­ло­сов было от­да­но за по­бе­ди­те­ля?

5. Первый сплав со­дер­жит 5% меди, вто­рой — 13% меди. Масса вто­ро­го спла­ва боль­ше массы пер­во­го на 4 кг. Из этих двух спла­вов по­лу­чи­ли тре­тий сплав, со­дер­жа­щий 10% меди. Най­ди­те массу тре­тье­го сплава.

6. Све­жие фрук­ты со­дер­жат 80% воды, а вы­су­шен­ные — 28%. Сколь­ко сухих фрук­тов по­лу­чит­ся из 288 кг све­жих фрук­тов?

 8. Имеются два сосуда, содержащие 10 кг и 16 кг раствора кислоты различной концентрации. Если их слить вместе, то получится раствор, содержащий 55% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 61% кислоты. Сколько килограммов кислоты содержится в первом растворе?

16. Имеются два сосуда, содержащие 48 кг и 42 кг раствора кислоты различной концентрации. Если их слить вместе, то получим раствор, содержащий 42% кислоты. Если же слить равные массы этих растворов, то полученный раствор будет содержать 40% кислоты. Сколько килограммов кислоты содержится во втором растворе?

17. Сме­ша­ли не­ко­то­рое ко­ли­че­ство 21-про­цент­но­го рас­тво­ра­ не­ко­то­ро­го ве­ще­ства с таким же ко­ли­че­ством 95-про­цент­но­го рас­тво­ра ­это­го же ве­ще­ства. Сколь­ко про­цен­тов со­став­ля­ет кон­цен­тра­ция по­лу­чив­ше­го­ся рас­тво­ра?

18. Све­жие фрук­ты со­дер­жат 93% воды, а вы­су­шен­ные — 16%. Сколь­ко сухих фрук­тов по­лу­чит­ся из 252 кг све­жих фрук­тов?

Упражнение 5

2. За­да­ние 4 № 506276. Сред­нее гео­мет­ри­че­ское трёх чисел и вы­чис­ля­ет­ся по фор­му­ле Вы­чис­ли­те сред­нее гео­мет­ри­че­ское чисел 12, 18, 27.

4. За­да­ние 4 № 506294. В фирме «Эх, про­ка­чу! » сто­и­мость по­езд­ки на такси (в руб­лях) рас­счи­ты­ва­ет­ся по фор­му­ле , где — дли­тель­ность по­езд­ки, вы­ра­жен­ная в ми­ну­тах . Поль­зу­ясь этой фор­му­лой, рас­счи­тай­те сто­и­мость 8-ми­нут­ной по­езд­ки.

5. За­да­ние 4 № 506295. Пло­щадь па­рал­ле­ло­грам­ма можно вы­чис­лить по фор­му­ле , где — сто­ро­ны па­рал­ле­ло­грам­ма (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те пло­щадь па­рал­ле­ло­грам­ма, если его сто­ро­ны 10 м и 12 м и .

6. За­да­ние 4 № 506296. Длину окруж­но­сти можно вы­чис­лить по фор­му­ле , где — ра­ди­ус окруж­но­сти (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те ра­ди­ус окруж­но­сти, если её длина равна 78 м. (Счи­тать ).

8. За­да­ние 4 № 506298. Пло­щадь тре­уголь­ни­ка можно вы­чис­лить по фор­му­ле , где — сто­ро­на тре­уголь­ни­ка, — вы­со­та, про­ве­ден­ная к этой сто­ро­не (в мет­рах). Поль­зу­ясь этой фор­му­лой, най­ди­те сто­ро­ну , если пло­щадь тре­уголь­ни­ка равна , а вы­со­та равна 14 м.

13. За­да­ние 4 № 506303. Пло­щадь тре­уголь­ни­ка можно вы­чис­лить по фор­му­ле , где и — сто­ро­ны тре­уголь­ни­ка, а — угол между этими сто­ро­на­ми. Поль­зу­ясь этой фор­му­лой, най­ди­те пло­щадь тре­уголь­ни­ка, если = 30°, = 5, = 6.

14. За­да­ние 4 № 506304. Пло­щадь тре­уголь­ни­ка можно вы­чис­лить по фор­му­ле , где — длины сто­рон тре­уголь­ни­ка, — ра­ди­ус впи­сан­ной окруж­но­сти. Вы­чис­ли­те длину сто­ро­ны , если .

15. За­да­ние 4 № 506305. Чтобы пе­ре­ве­сти зна­че­ние тем­пе­ра­ту­ры по шкале Цель­сия в шкалу Фа­рен­гей­та, поль­зу­ют­ся фор­му­лой F = 1, 8C + 32, где C — гра­ду­сы Цель­сия, F — гра­ду­сы Фа­рен­гей­та. Какая тем­пе­ра­ту­ра по шкале Фа­рен­гей­та со­от­вет­ству­ет − 1° по шкале Цель­сия?

16. За­да­ние 4 № 506306. Пло­щадь лю­бо­го вы­пук­ло­го че­ты­рех­уголь­ни­ка можно вы­чис­лять по фор­му­ле , где — длины его диа­го­на­лей, а угол между ними. Вы­чис­ли­те , если .

17. За­да­ние 4 № 506307. Цен­тро­стре­ми­тель­ное уско­ре­ние при дви­же­нии по окруж­но­сти (в м/c2 ) можно вы­чис­лить по фор­му­ле где — уг­ло­вая ско­рость (в с− 1), а R — ра­ди­ус окруж­но­сти. Поль­зу­ясь этой фор­му­лой, най­ди­те рас­сто­я­ние R (в мет­рах), если уг­ло­вая ско­рость равна 3 с− 1, а цен­тро­стре­ми­тель­ное уско­ре­ние равно 45 м/c2.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.