|
|||
3. Что есть реальность?
Несколько лет назад городской совет Монцы, Италия, запретил держать золотых рыбок в круглых аквариумах для золотых рыбок. Инициатор закона объяснил свою позицию тем, что держать рыбок в круглом аквариуме жестоко, так как реальность за его пределами будет представать для них в искаженном виде. Но как нам знать, как выглядит неискаженная реальность? Не может ли оказаться, что мы сами внутри большого аквариума и наше видение искажено гигантскими линзами? Картина реальности рыбки отличается от нашей, но можем ли мы быть уверены, что она менее реальна? Зрительные образы золотой рыбки отличаются от наших, но она всё же могла бы формулировать научные законы движения объектов, наблюдаемых из своего аквариума. Например, из-за искажения, свободно движущийся объект, движущийся по прямой линии, за которым наблюдаем мы, для золотой рыбки будет казаться движущимся по кривой. Тем не менее, золотые рыбки могут вывести относительно их искаженной системы отсчета, свои, истинные для любых явлений научные законы, что дало бы им возможность прогнозирования движения объектов за пределами чаши. Ее законы будут сложнее, чем наши, но то, что просто для одного, может быть сложно другому. Если бы рыбка сформулировала такую теорию, то мы были бы обязаны допустить реальность ее картины мира. Знаменитый пример разного видения реальности — модель описания движения астрономических тел, предложенная Птолемеем около 150 г. н. э. Птолемей опубликовал свою работу в тринадцатикнижном трактате, более известным под своим арабским названием Альмагест. Альмагест начинается с объяснения причин полагать, что Земля шарообразна, неподвижна, находится в центре Вселенной и ничтожно мала в сравнении с расстоянием до небес. Несмотря на гелиоцентрическую модель Аристарха, эти убеждения поддерживались самыми образованными греками, как минимум, со времен Аристотеля, который верил в мистические причины нахождения Земли в центре Вселенной. В модели Птолемея Земля оставалась неподвижной в центре, а планеты и звёзды двигались вокруг неё по сложным орбитам, включающих эпициклы, подобно движению колеса по колесу.
Модель казалась естественной, потому что мы не чувствуем движение земли под ногами (исключая случаи вроде землетрясения или переполнения эмоциями). Позднее европейское учение было основано на греческих представлениях о мире, которые уже распространились. Так, идеи Аристотеля и Птолемея стали базисом для многих европейских мыслителей. Модели Вселенной Птолемея была принята Католической церковью и стала официальной доктриной на протяжении четырнадцати столетий. Так было до 1543 года, пока Коперник не предложил альтернативную модель в своей книге «De revolutionibus orbium coelestium» («Об обращении небесных сфер»), опубликованной лишь в год его смерти (это при том, что работал он над своей теорией несколько десятков лет). Коперник, как и Аристарх примерно за семнадцать веков до него, описал мир, где Солнце находится в состоянии покоя, а планеты обращаются вокруг него по круговым орбитам. Хоть идея и не была нова, ее возрождение встретило страстный отпор. Модель Коперника противоречила Библии, которая представлялась утверждающей, что планеты обращаются вокруг Земли, даже если Библия этого никогда прямо не заявляла. В сущности, в свое время Библия была написана людьми, которые считали Землю плоской. Модель Коперника привела к бурным дебатам по поводу того, действительно ли Земля неподвижна. Они достигли накала, когда Галилей в 1633 году за защиту модели Коперника, а также за мнение о том, что «можно придерживаться противного Священному Писанию мнения и защищать его как правдоподобное», был обвинен в ереси. Его признали виновным, посадили под домашний арест на всю оставшуюся жизнь и заставили отречься от своих взглядов. Как говорят, он пробормотал: «Eppur si muove» («И все-таки она вертится! »). В 1992 году Римская Католическая Церковь наконец признала, что приговор Галилею был несправедлив. Так какая же модель верна: система Птолемея или система Коперника? Хотя часто можно услышать, что Коперник доказал, будто Птолемей ошибается, это не так. Как и в случае обыкновенного для нас восприятия, противоречащего восприятию золотых рыбок, каждый может использовать чужую картину в качестве модели Вселенной, ибо наши наблюдения за небесами можно объяснить как тем, что Земля находится в состоянии покоя, так и тем, что в состоянии покоя находится Солнце. Забудем о роли системы Коперника в философских дебатах по поводу природы нашей Вселенной. Реальное преимущество этой системы заключается в том, что совокупность факторов движения будет гораздо проще в той схеме, где Солнце неподвижно. Особый вид альтернативной реальности можно встретить в научно-фантастическом фильме «Матрица», где человечество неосознанно живет в моделируемой виртуальной реальности, созданной разумными компьютерами для того, чтобы подавить и усмирить людей, в то время как компьютеры питаются их биоэлектрической энергией (что бы под этим ни подразумевалось). Возможно, это не настолько неправдоподобно, потому что много людей предпочитают проводить свое время в моделируемой действительности веб-сайтов, таких как Вторая Жизнь. Как понять, что мы не персонажи мыльной оперы, постановщиком которой является компьютер? Если бы мы жили в синтетическом воображаемом мире, события не обязательно имели бы какую-то логику или последовательность или подчинялись законам. Инопланетяне-экспериментаторы могли бы найти занятным или забавным посмотреть на наши реакции, если, например, полная Луна расколется надвое или если люди со всего мира, сидящие на диете, вдруг почувствуют непреодолимую тягу к поеданию тортов с банановым кремом. Но если бы инопланетяне навязывали нам логичные законы, то мы не могли бы сказать, что есть иная реальность за этой, имитированной. Было бы легко назвать мир инопланетян «реальным», а синтетический — «ложным». Но если существа это симулированного мира не могут, как мы, увидеть свою Вселенную извне, для них не было бы причин сомневаться в своей картине мира. Это современная версия той мысли, что все мы — лишь персонажи чьего-то сна. Эти примеры приводят нас к заключению, которое является важной частью этой книги: нет никакой картины (или теории) независимой концепции реальности. Вместо этого мы примем идею, которую назовем «модельно-зависимый реализм»: идея, что физическая теория или картина мира — это модель (главным образом математической природы) и комплекс правил, которые соединяют элементы этой модели в наблюдении. Это создаст каркас для интерпретации современной науки.
Со времен Платона философы спорят о природе реальности. Классическая наука основана на вере, что существует настоящий внешний мир, свойства которого точны и независимы для наблюдателя, воспринимающего их. Согласно классической науки, точные объекты существуют и имеют такие физические свойства, как скорость и масса, имеющие определенную величину. С этой точки зрения наши теории — попытки описать эти объекты и их свойства, и наши измерения и ощущения соответствуют им. И наблюдатель и наблюдаемый является частями мира, у которого есть объективное существование, и какие-либо различия между ними не имеют значащего значения. Другими словами, если вы видите стадо зебр борющихся за место в гараже, это потому, что там действительно стадо зебр ведет борьбу за место в гараже. Все другие наблюдатели, которые оценивают, измерят те же самые свойства, и у стада будут те же свойства, независимо наблюдает кто-либо за ними или нет. В философии эту веру называют реализмом. Хотя реализм может быть заманчивой точкой зрения, как мы увидим позже, но то, что мы знаем о современной физике, делает его трудным для защиты. Например, в соответствии с принципами квантовой механики, которая является точным описанием природы, частицы не имеют, как ни определенного положения в пространстве, так и ни определенной скорости и пока эти величины измеряются наблюдателем. Поэтому не будет правильным утверждение, что измерение дает определенный результат, потому что измеряемые величины не имеют смысла на момент измерения. Фактически, в некоторых случаях отдельные объекты даже не имеют независимого существования, а скорее существуют как часть ансамбля многих частиц. И, если теория, называемая «голографическим принципом», окажется верной, то мы и наш четырехмерный мир можем быть тенями на границе большего мира, пятимерного пространственного-временного континуума. В этом случае, наш статус во Вселенной аналогичен статусу золотой рыбки. Строгие реалисты часто утверждают, что доказательство этих научных теорий представляет действительность, в чем и заключается их успешность. Но различные теории могут успешно описывать те же феномены через несоизмеримые концептуальные структуры. Фактически, многие научные теории, которые оказались успешными, позднее были заменены другими, одинаково успешными теориями, основанные на более новых понятиях реальности. Традиционно, те, кто не принимает реализм, именуются антиреалистами. Антиреалисты указывают на различия между эмпирическим знанием и теорией. Как правило, они утверждают, что наблюдение и эксперимент являются содержательными, а теории являются не более, чем полезными инструментами, которые не заключают в себе каких-либо более глубоких истин, лежащих в основе наблюдаемых явлений. Некоторые антиреалисты даже хотели свести всю науку только к объективно наблюдаемым явлениями. По этой причине, в девятнадцатом веке многие отклоняли гипотезу об атомах на основании того, что нам никогда не удавалось увидеть ни один из них. Джордж Беркли (1685–1753) даже пришел к тому, что не существует ничего, кроме разума и его мыслей. Когда друг английского автора и лексикографа доктора Самюэля Джонсона (1709–1784) заметил, что утверждение Беркли не может быть опровергнуто, то Джонсон, как утверждают, ответил, подойдя к большому камню, пнув его, и объявив, «Я отвергаю это таким образом». Конечно боль в ноге, которую почувствовал доктор Джонсон, тоже была идеей в его голове, поэтому он действительно не опроверг доводов Беркли. Но его действие проиллюстрировало взгляды философа Дэвида Юма (1711–1776), который писал, что хотя мы и не имеем рациональных основ для веры в объективную реальность, мы также не имеем другого выбора, кроме того, чтобы действовать так, словно это истина. Модельно-зависимый реализм кратко завершает весь этот спор и обсуждение между школой реалистов и анти-реалистов.
Согласно модельно-зависимому реализму, бессмысленно спрашивать является ли модель реалистичной без того, насколько она согласуется с наблюдениями. Если существуют две такие модели, которые согласуются с наблюдениями, подобно картинам золотой рыбки и нашей, тогда нельзя сказать, какая из этих моделей является более реалистичной. В этом случае можно использовать любую модель, которая является более пригодной в конкретной ситуации, в соответствии с тем или иными соображениями. Например, если бы кто-то находился внутри шара, изображение золотой рыбки было бы полезным, но для тех, кто находится снаружи, должно было бы быть очень неудобно описывать события из далекой галактики в рамках шара на Земле, особенно потому, как шар должен будет двигаться так, как Земля обращается вокруг Солнца и вращается по своей оси. Мы строим модели не только в науке, но и в нашей повседневной жизни. Модельно-зависимый реализм относится не только к научным моделям, но также и к сознательным и подсознательным мысленным моделям, которые все мы создаем, чтобы интерпретировать и понять ежедневный мир. Невозможно убрать наблюдателя — нас — из нашего восприятия мира, которое создается с помощью наших чувственных восприятий и способа нашего мышления, рассуждения. Наше восприятие — а следовательно, наблюдения, на которых базируются наши теории — не прямое, а скорее формируется сквозь своеобразную линзу, интерпретативную структуру человеческого мозга. Модельно-зависимый реализм соответствует нашему способу восприятия объектов. В зрении мозг человека принимает серию сигналов через оптический нерв. Эти сигналы не образовывают такую картинку, которую вы бы приняли на ваш телевизор. В человеческом глазу есть слепое пятно в том месте, где оптический нерв крепится к сетчатке, а единственная часть вашего поля зрения с хорошим разрешением — это узкая площадь в 1 градус зрительного угла вокруг центра сетчатки, шириной в большой палец вытянутой вперед руки. Таким образом, исходный сигнал, поступающий в мозг, является низкокачественной картинкой с дыркой в ней. К счастью, наш мозг способен обрабатывать этот сигнал, сочетая информацию от обоих глаз, заполняя слепые промежутки (исходя из того предположения, что свойства соседних участков похожи), и собирая картинку воедино (интерполируя). Более того, он считывает двухмерный поток данных с сетчатки и создает из него ощущение трехмерного пространства. Другими словами, мозг создает мысленную картину или модель. Наш мозг так хорошо моделирует реальность, что если бы люди, носящие очки, перевернули в них изображение вверх ногами, то их мозги через некоторое время изменили модель мира, и очкарики видели бы все так же, как и прежде. Если они снимут очки, они снова увидят перевернутый мир, а потом снова адаптируются. Это иллюстрирует то, что имеет в виду человек, когда говорит: «Я вижу кресло», и который всего-навсего использовал свет, рассеянный креслом, чтобы создать изображение или модель этого кресла у себя в голове. В случае, если модель перевернута, то если повезет, мозг исправит это до того, как человек сядет в кресло. Другая проблема, которую модельно-ориентированный реализм пытается решить (или, как минимум, избежать) — это значение «существования». Как я узнаю, существует ли стол в данной комнате, если я выйду из нее и не смогу его видеть? Что будет значить утверждение о том, что предметы, которых мы не видим, такие как электроны или кварки (частицы, и которых, как считается, состоят протоны и нейтроны) — существуют? Кто-то мог бы придерживаться модели, когда стол исчезает, когда я выхожу из комнаты, появляется вновь, когда я возвращаюсь, но это было бы очень грубо. И что было бы, если бы потолок обрушился, когда я вышел из комнаты? Каким же образом в рамках модели «Стол-исчезает-когда-я-выхожу-из-комнаты» я мог бы объяснить то, что когда я вошел в комнату, стол возник заново — разломанный и под обломками потолка? Модель, в которой стол никуда не исчезает, является гораздо более простой, а также гармоничной с наблюдением. Это все, что можно спросить. В ситуации, когда мы не можем увидеть субатомные частицы, электроны являются удобной моделью, объясняющей такие наблюдения, как следы в конденсационной камере или световые точки на экране телевизора, а также многие иные явления. Говорят, что электрон был открыт в 1897 году физиком Томпсоном в лаборатории Кавендиш в Университете Кембридж. Он экспериментировал с электрическим током в стеклянных трубках — феноменом, называемым катодные лучи. Эксперименты привели его к смелому заключению о том, что загадочные лучи состояли из мельчайших «корпускулов», которые являлись материальными составляющими частями атомов, прежде считавшимися неделимыми фундаментальными элементами материи. Томсон не «увидел» электрон, так же как и его предположение не было прямо или однозначно продемонстрировано экспериментами. Но модель оказалась ключевой в применении от фундаментальной до прикладной науки, и сегодня все физики уверены в существовании электронов, даже если вы их не видите.
Кварки, которые мы также не можем наблюдать, добавлены в модель, чтобы объяснить свойства протонов и нейтронов в ядре атома. Хотя протоны и нейтроны, как утверждается, состоят из кварков, мы никогда экспериментально не обнаружим кварки, потому что притягивающие силы между кварками увеличиваются при их отдалении друг от друга, и поэтому несвязанные, свободные кварки не могут существовать в природе. Они всегда проявляются в группах из трех (протоны и нейтроны) кварков, или парами: кварк и антикварк (пи-мезон), и ведут себя так, как если бы были соединены резинкой. И вопрос «имеет ли смысл говорить, что кварки реально существуют, если вы никогда не сможете выделить один кварк? » был спорным долгие годы после того как кварковая модель была впервые предложена. Идея о том, что определенные частицы состоят из различных комбинаций нескольких более простых частиц, позволила создать принципы, которые в результате дали простое и привлекательное объяснение их свойств. Но не смотря на то, что физики привыкли рассматривать частицы, существование которых подразумевалось только в статистических всплесках данных по разбиению других частиц, идея представления реальности частицы, которая в принципе не поддаётся наблюдению, была чересчур невероятна для многих физиков. Однако, спустя годы, когда кварковая модель стала приводить к более и более правильным предсказаниям, противников этой модели стало меньше. Конечно возможно, что какие-нибудь инопланетные существа с семнадцатью руками, инфракрасными глазами, и привычкой выдувать взбитые сливки из ушей сделает те же экспериментальные исследования что и мы, но опишет их без использования кварков. Тем не менее, согласно моделезависимому реализму, кварки существуют в модели, которая согласуется с нашими наблюдениями поведения субатомных частиц. Моделезависимый реализм может создать среду для вопросов, таких как: если мир был создан определенное время назад, то что происходило до этого? Философ времен раннего христианства, Св. Августин (354–430), говорил, что ответ не в том, готовил ли Бог ад для людей, задающих такие вопросы, а в том, что время принадлежит миру, который Бог создал, и время не существовало до момента сотворения, которое, как он верил, состоялось не так давно. Это одна из возможных моделей, которая одобрена теми, кто утверждает, что запись, сделанная в книге Бытия буквально верна, даже при том, что мир содержит ископаемые и другие доказательства того, что Земля гораздо старше. (Они были помещены там, чтобы одурачить нас? ) Кто-то также может иметь другую модель, в которой от начала Большого взрыва прошло 13. 7 миллиардов лет. Модель, объясняющая большую часть наших современных наблюдений, включая исторические и археологические свидетельства, является лучшим представлением о прошлом из всех, что мы имеем. Вторая модель может объяснить ископаемые и радиоактивные свидетельства, и тот факт, что мы принимаем свет от галактик, до которых миллионы световых лет, так что эта модель — теория Большого взрыва — более полезна, чем первая. До сих пор ни одну из моделей нельзя назвать более реальной, чем другая.
Некоторые придерживаются модели, где время началось даже раньше Большого взрыва. Все еще не ясно может ли модель, в которой время шло и до Большого взрыва, лучше объяснять текущие исследования, потому что законы развития Вселенной, видимо, разрушаются в момент Большого взрыва. Если это так, то нет никакого смысла создавать модель описывающую время до Большого взрыва, потому что все что существовало тогда, не будет иметь наблюдаемых последствий в настоящем, поэтому мы можем остановиться на идее о том что Большой взрыв был моментом создания мира. Модель хорошая модель, если она:
1. Изящна 2. Содержит мало произвольных или регулируемых элементов 3. Согласуется со всеми существующими наблюдениями и объясняет их. 4. Делает подробные прогнозы относительно будущих наблюдений, которые могут опровергнуть или доказать ложность модели, если они не подтвердились.
Например, теория Аристотеля, о том, что мир состоит из четырех элементов: земли, воздуха, огня и воды, и что объекты стремящиеся осуществить свои назначения были изящны и не содержали изменяемых элементов. Но во многих случаях теория не давала определенных предсказаний, а если и давала, то они не всегда соответствовали наблюдениям. Одним из этих предсказаний было то, что более тяжелые объекты должны падать быстрее, потому что их цель — падение. До Галилео никто и не думал, что это нужно проверить. Существует история, что он проверял это, бросая грузы различной массы с Пизанской («падающей») башни. Скорее всего, это легенда, но мы точно знаем, что он скатывал шары различной массы по наклонному желобу и заметил, что они скатывались с одинаковой скоростью, вопреки предсказанию Аристотеля. Вышеупомянутый критерий очевидно субъективный. Изящество, например, это не то что можно просто измерить, но оно высоко ценится среди ученых, потому что законы природы стремятся экономно сократить число определенных ситуаций в одну простую формулу. Изящество относится к форме теории, но оно также тесно связано с недостатком изменяемых элементов, так как теория, сжатая выдуманными коэффициентами не очень элегантна. Перефразируя Эйнштейна, теория должна быть настолько простой, насколько это возможно, но не проще. Птолемей добавлял эпициклы к круговым орбитам небесных тел для того, чтобы его модель могла точно описывать их движение. Модель можно было сделать более точной путем добавления эпициклов к эпициклам, а к ним еще эпициклов. Хотя добавленное усложнение может сделать теорию более точной, ученые рассматривают модель, искаженную чтобы совпадать с определенными наблюдениями, как неудовлетворительную, больше похожую на каталог данных, чем на теорию, удачно воплощающую какой-либо полезный принцип. В Разделе 5 мы увидим, что многие люди рассматривают «стандартную модель», описывающую взаимодействия элементарных частиц природы, как неэлегантную. Эта модель более удачная, чем Птолемеевские эпициклы. Она предсказала существование нескольких новых частиц до того как они были обнаружены, и с большой точностью описала результаты множества экспериментов в течение нескольких десятилетий. Но она содержит дюжины изменяемых параметров, чьи величины должны быть скорее установлены, чтобы совпасть с наблюдениями, чем определены самой теорией. Согласно четвертому пункту, ученые всегда впечатлены, когда новые и ошеломляющие предсказания доказаны верно. С другой стороны, когда обнаруживается, что модель имеет недостатки, обычная реакция — это заявить, что эксперимент неверен. Если не доказывается что это случайность, люди обычно не отказываются от модели, пытаясь вместо этого сохранить ее в модифицированном виде. Хотя физики, несомненно, упорны в своих попытках спасти теории, которыми они восхищаются, стремление модифицировать теорию исчезает, отчасти из-за того что преобразования становятся неестественными или громоздкими, и, следовательно, неэлегантными. Если модификации необходимые для приспособления новых наблюдений, становятся слишком причудливыми, это сигнализирует о потребности в новой модели. Одним из примеров старой модели, которая уступила дорогу под весом новых наблюдений, была идея статической Вселенной. В 1920-х годах, большинство физиков считали, что Вселенная была статичной, или неизменного размера. Тогда, в 1929 году Эдвин Хаббл опубликовал свои наблюдения, показывающие, что Вселенная расширяется. Но Хаббл не непосредственно наблюдал расширение Вселенной. Он наблюдал свет, излучаемый галактиками. Этот свет содержит характерный признак, или спектр, основанный на составе каждой галактики, который изменяется на известную заранее величину, если галактика движется относительно нас. То есть, анализируя спектр отдаленных галактик, Хаббл мог определить их скорости. Ожидалось, что он обнаружит столько же приближающихся галактик, сколько и отдаляющихся. Но вместо этого он обнаружил, что все галактики отдаляются от нас, причем, чем дальше они расположены, тем быстрее они отдаляются. Хаббл подтвердил, что Вселенная расширяется, но другие, пытаясь придерживаться ранних моделей, пытались объяснить его наблюдения в контексте теории статической Вселенной. Например, Фриц Цвики, физик из калифорнийского технологического института, предположил, что по какой-то неизвестной причине свет может терять свою энергию при прохождении огромных расстояний. Это уменьшение энергии соответствует изменению светового спектра, что по мнению Цвики может объяснить наблюдения Хаббла. В течение десятилетий после исследований Хаббла ученые продолжали придерживаться теории стабильного развития. Несмотря на это, теория расширяющейся Вселенной, подтвержденная Хабблом, становится общепризнанной. В наших поисках законов, управляющих Вселенной были сформированы теории, или модели, такие как четырехэлементная теория, Птолемеева теория, теория флогистона, теория Большого взрыва, и т. п. С каждой новой теорией или моделью наши представления о реальности и о фундаментальных составляющих Вселенной изменились. Например, рассмотрим теорию строения света. Ньютон полагал, что свет состоит из маленьких частиц или корпускул. Это объяснило бы, почему свет распространяется по прямой, и Ньютон также использовал это, чтобы объяснить, почему свет отклоняется или отражается, когда он проходит из одной среды к другой, как, например, из воздуха к стеклу, или из воздуха в воду.
Не смотря на это, корпускулярная теория не смогла объяснить увиденный Ньютоном феномен, известный как круги Ньютона. Положите линзу на плоскую отражающую поверхность и осветите её одноцветным лучом, таким как натриевый луч. Смотря сверху можно увидеть несколько светлых и темных колец, расположенных в месте соприкосновения линзы и поверхности. Это сложно объяснить, используя теорию света, но можно рассмотреть, используя волновую теорию. Согласно волновой теории, появление светлых и темных колец вызвано феноменом называющимся интерференцией. Любая волна, так же как водяная волна, состоит из серии гребней и впадин. Если при столкновении волн гребни и впадины совпадают, они усиливают друг друга, сливаясь в волну большего размера. Это называется усиливающей интерференцией. В таком случае говорят что волны «в фазе». В противоположном случае, когда волны столкнутся, гребень одной волны может совпасть с впадиной другой волны. Тогда они гасят друг друга, попадают «не в фазу». Эта ситуация называется гасящей интерференцией. На кругах Ньютона светлые кольца находятся на определенных расстояниях от центра линзы, где линза и отражающая плоскость отдалены так, что волна отраженная от линзы, отличается от волны отраженной плоскостью на целое(1, 2, 3…) число длин волн, создавая, таким образом, усиливающую интерференцию. (Длина волны — это расстояние между гребнями или впадинами соседних волн. ) С другой стороны, темные кольца расположены на таких расстояниях от центра, где разница между двумя отраженными волнами равна полуцелому (1/2, 1 1/2, 2 1/2…. ) числу длин волн, что создает гасящую интерференцию — волна, отраженная от линзы гасит волну, отраженную от плоскости.
В девятнадцатом веке это послужило доказательством волновой теории света, показывая, что корпускулярная теория была неверна. Тем не менее, в начале двадцатого века Эйнштейн показал, что фотоэлектрический эффект (который сейчас используется в телевидении и цифровых камерах) можно объяснить тем, что частица или квант света ударяется об атом, выбивая при этом электрон. Таким образом, свет имеет свойства как частицы, так и волны. Концепция волн, возможно, так прочно вошла в сознание из-за того, что люди могли наблюдать океан или лужу, когда в неё бросают камень. Фактически, если вы когда-нибудь бросали два камня в лужу, вы возможно наблюдали интерференцию в действии, как на иллюстрации выше. Другие жидкости ведут себя таким же образом, кроме, разве что, вина, если выпьете его слишком много. Корпускулярная теория была сродни камням, гальке и песку. Но этот корпускулярно-волновой дуализм — идея о том, что объект может быть описан и как частица, и как волна — чужд для повседневного опыта, как идея о том, что можно выпить кусок песчаника.
Такие двойственности — ситуации, в которых две разные теории с точностью описывают один и тот же феномен — согласуются с моделезависимым реализмом. Каждая теория может описать определенные свойства, но ни одна не может сделать это точнее или реальнее чем другая. Касательно законов, управляющих Вселенной, можно сказать вот что: похоже, не существует одной математической модели или теории, которая могла бы описать каждый аспект Вселенной. Вместо этого как упомянуто во вводной главе, кажется, есть сеть теорий под названием М-теории. Каждая теория в сети М-теорий способна описывать явления в пределах определенного диапазона. Где бы ни пересекались их области, различные теории в сети соответствуют друг другу, поэтому их можно назвать частями одной теории. Но ни одна отдельная теория внутри сети не может описать каждого аспекта Вселенной — все силы природы, частицы, создающие эти силы, строение времени и пространства, где все это происходит. Хотя эта ситуация перечеркивает мечту традиционных физиков о единственной единой теории, такое приемлемо лишь в рамках модельно-зависимого реализма. Мы будем обсуждать дуальность и М-теорию в 5 главе, но перед этим мы вернемся к фундаментальным принципам, на которых основан наш современный взгляд на природу: квантовая теория, и в частности, подход к квантовой теории назван альтернативными историями. С подобной точки зрения, Вселенная не имеет совершенно отдельного существования или истории, но скорее, каждые возможные варианты Вселенной существуют одновременно в так называемой квантовой суперпозиции. Это может звучать также возмутительно, как и теория, в которой стол исчезает каждый раз после того как мы покидаем комнату, но в этом случае теория прошла все экспериментальные проверки, которым ее когда-либо подвергали.
|
|||
|