Хелпикс

Главная

Контакты

Случайная статья





Свойства электромагнитной волны.



 

1. Электропроводность – способность веществ проводить электрический ток, обусловленная наличием в них подвижных заряженных частиц (электронов, ионов и др. ). Электропроводность (L) является величиной, обратной электрическому сопротивлению (R).
При подаче на объект разности потенциалов (U) через него потечет электрический ток силой (I), величина которой пропорциональна электропроводности (L):
I = L • U или I = U / R.
Величина электропроводности зависит от количества электрических зарядов и их подвижности. Чем больше количество зарядов и их подвижность, тем больше электропроводность.
Вещества по отношению к постоянному току делят на проводники и диэлектрики. Проводники электрические – вещества, хорошо проводящие электрический ток благодаря наличию в них большого количества подвижных заряженных частиц. Они делятся на электронные (металлы), ионные (электролиты) и смешанные, где имеет место движение как электронов, так и ионов (например, плазма). Диэлектрики – твердые, жидкие и газообразные вещества, очень плохо проводящие электрический ток. Удельное сопротивление постоянному току у них составляет 108-1017 Ом • см. Особое место занимают полупроводники – вещества, электропроводность которых при обычных условиях весьма низка, но она резко возрастает с температурой. На их электропроводность влияют и другие внешние воздействия: свет, сильное электрическое поле, поток быстрых частиц и др.
Электропроводность живых тканей определяется концентрацией ионов и их подвижностью, которые весьма неодинаковы в различных тканях, в связи с чем биологические объекты обладают свойствами как проводников, так и диэлектриков.
В межклеточной жидкости с максимальным содержанием ионов удельная электропроводность достаточно высока и составляет 1 См • м-1. Напротив, в цитозоле, содержащем органеллы и крупные белковые молекулы, она понижается до 0, 003 См • м-1. Удельная электропроводность плазмолеммы и внутриклеточных мембран еще ниже (1-3) • 10-5 См • м-1. Удельная электропроводность целых органов и тканей существенно меньше, чем составляющих их сред. Ее наибольшие величины (0, 6-2, 0 См • м-1) имеют жидкие среды организма (кровь, лимфа, желчь, моча, спинно-мозговая жидкость), а также мышечная ткань (0, 2 См • м-1). Напротив, удельная электропроводность костной, жировой, нервной ткани, а в особенности грубоволокнистой соединительной ткани и зубной эмали чрезвычайно низкая (10-3-10-6 См • м-1). Электропроводность кожи зависит от толщины состояния дериватов и содержания воды. Сухая кожа является плохим проводником электрического тока, тогда как влажная хорошо проводит его. В связи с тем, что постоянный ток распространяется по пути наименьшего сопротивления, то состояние электропроводности тканей и тесно с ней связанная поляризация существенно сказываются на происходящих в организме изменениях при гальванизации (см. ), лекарственном электрофорезе (см. Электрофорез лекарственных веществ) и других электротерапевтических методах.
Значительно более сложный характер носит электропроводность клеток и тканей для переменного тока. Так как биологические объекты обладают как проводимостью, так и емкостью, то они будут характеризоваться как активным, так и реактивным сопротивлением, в сумме составляющими импеданс объекта. Импеданс биологической ткани зависит от частоты тока: при увеличении частоты реактивная составляющая импеданса уменьшается. Частотно-зависимый характер емкостного сопротивления является одной из причин зависимости импеданса биологических объектов от частоты тока, т. е. дисперсии импеданса. Изменение импеданса с частотой обусловлено также зависимостью поляризации от периода действия переменного тока. Если время, в течение которого электрическое поле направлено в одну сторону, больше времени релаксации какого-либо вида поляризации, то поляризация достигает своего максимального значения и вещество будет характеризоваться постоянными значениями диэлектрической проницаемости и проводимости. До тех пор, пока полупериод переменного тока больше времени релаксации, эффективная диэлектрическая проницаемость и проводимость объекта не будут изменяться с частотой. Если же при увеличении частоты полупериод переменного тока становится меньше времени релаксации, то поляризация не успевает достигнуть максимального значения. После этого диэлектрическая проницаемость начинает уменьшаться с частотой, а проводимость возрастать. При значительном увеличении частоты данный вид поляризации практически будет отсутствовать, а диэлектрическая проницаемость и проводимость снова станут постоянными величинами.
При изучении частотных зависимостей сопротивления и емкости биологических объектов было обнаружено три области дисперсии: ?, ? и?. ? -Дисперсия занимает область низких частот, примерно до 1 кГц. Ее объясняют поверхностной поляризацией клеток. По мере увеличения частоты переменного тока эффект поверхностной поляризации уменьшается, что проявляется как уменьшение диэлектрической проницаемости и сопротивления ткани. B-Дисперсия занимает более широкую область частот: 103-107 Гц. В прошлом для объяснения дисперсии диэлектрической проницаемости и сопротивления в данной области обращались к теориям дипольной и макроструктурной поляризации. В настоящее время для объяснения? -дисперсии развивается электрохимическая (электролитическая) теория поляризации биологических объектов. Ценность данного подхода состоит в том, что он позволяет учитывать при описании электрических свойств биологических тканей клеточную проницаемость и наличие ионных потоков через мембрану.
Y-Дисперсия диэлектрической проницаемости и проводимости наблюдается на частотах выше 1000 МГц. Уменьшение диэлектрической проницаемости в данном диапазоне обусловлено ослаблением эффектов поляризации, вызываемой диполями воды.
Общая картина частотной зависимости электрических параметров сохраняется для всех тканей. Некоторые индивидуальные особенности ее определяются размерами и формой клеток, величиной их проницаемости, соотношением между объемом клеток и межклеточных пространств, концентрацией свободных ионов в клетках, содержанием свободной воды и др. Изменение состояния клеток и тканей, их возбуждение, изменение интенсивности метаболизма и других функций клеток приводит к изменению электропроводности биологических систем. В этой связи изменение электропроводности используют для получения информации о функциональном состоянии биологических тканей, для выявления воспалительных процессов, изменения проницаемости клеточных мембран и стенок сосудов при патологии или действии на организм различных факторов, для оценки кровенаполнения сосудов органов и тканей и др.
Дисперсия электрических свойств тканей, обусловленная состоянием заряженных частиц, играет важную роль в действии на организм лечебных физических факторов, в особенности переменных токов, электромагнитных полей и их составляющих. Они определяют их проникающую способность, селективность и механизмы поглощения энергии факторов, первичные механизмы их действия на организм.

1(2)Ткани человеческого организма более чем на половину состоят из воды, а некоторые из них (например, мозг) состоят из воды более чем на 80%. Поэтому в общем виде организм человека можно рассматривать как электролит, в котором имеется много молекул, находящихся в ионизированном состоянии. Под действием постоянного электрического тока ионы движутся в межэлектродном пространстве с различной скоростью в зависимости от своей физической природы, разности потенциалов тока, температуры и физико-химических свойств среды. Ионы, двигаясь под влиянием электрического поля в средах организма, скапливаются около клеточных мембран, обладающих большим сопротивлением, что ведет к образованию поляризационного поля. Электрический заряд скопившихся у мембран ионов противоположен заряду действующего постоянного тока, поэтому поляризационный ток усиливает сопротивление проходящему току, однако лишь на очень короткое время.

Постоянный ток оказывает раздражающее действие на организм не только при его замыкании и размыкании, но и во время прохождения тока. При раздражении кожи силой тока, превышающей пороговую величину, человек ощущает боль в виде покалывания. Если электрод расположен на коже вблизи нервного ствола, ощущение раздражения сильнее. При расположении электрода над мышцей можно наблюдать ее сокращение в моменты замыкания и размыкания цепи тока.

Постоянный ток во время замыкания и размыкания действует раздражающе не на весь межэлектродный участок, а только на место расположения электродов. В момент замыкания тока раздражение происходит на катоде, в момент размыкания - на аноде. Установлено, что на катоде во время замыкания возбудимость и проводимость повышаются, а на аноде, наоборот, понижаются. Эти изменения на катоде называют катэлектротоном, на аноде - анэлектротоном. Функциональные изменения происходят не только на месте локализации электродов, но и на некотором расстоянии от них. В момент размыкания возбудимость и проводимость на каждом полюсе меняются в обратном направлении.

При размыкании на катоде возбудимость и проводимость понижаются, на аноде повышаются. Практически через несколько секунд действия постоянного тока возбудимость и проводимость на обоих полюсах возвращаются к исходным величинам.

Гальванизация — лечебный метод, в котором действующим фактором является непрерывный постоянный электрический ток.

. Электрофорез — лечебный метод, в котором действующим фактором является гальванический ток и лекарственные вещества, вводимые с его помощью.

Показания: заболевания периферической нервной системы

Фонофорез - это эффективная и безболезненная процедура, в ходе которой происходит введение лекарственных веществ в кожу с помощью ультразвука.

2. См. в тетради. Действие переменного тока на организм существенно зависит от его частоты. При низких, звуковых и ультразвуковых частотах переменный ток, как и постоянный, оказывает раздражающее действие на биологические ткани. Это обусловлено смещением ионов растворов электролитов, их разделением, изменением их концентрации в разных частях клетки и межклеточного пространства.


Раздражение тканей зависит также и от формы импульсного тока, длительности импульса и его амплитуды

 

3. Импеданс тканей организма

Ткани организма проводят не только постоянный, но и пе ременный ток. В организме нет таких систем, которые бы ли бы подобны катушкам индуктивности, поэтому индуктивность его близка к нулю. ( остальное в тетр смотри)

Диатермия (греч. diathermaino – прогреваю) – электротерапевтический метод, основанный на использовании высокочастотного переменного электрического тока. Применяется как в физиотерапии, так и в хирургии

4. Основные характеристики импусного тока: амплитуда a, длительность t и период Т, или частота повторения, а также форма импульсов, скважность, Кроме того импульсные токи делятся на выпрямленные и переменного направления.

формы, — прямоугольной, трапециевидной, треугольной, экспоненциальной (токи Лапика)

СКВАЖНОСТЬ - отношение периода следования (повторения) электрических импульсов к их длительности

Физиологическое действие каждого из импульсных токов на организм имеет свои особенности, зависящие от их физических параметров. Большинство из них оказывают выраженное влияние на нервно-мышечную систему. Помимо различного по интенсивности раздражающего действия на нервно-мышечный аппарат импульсные токи могут оказывать выраженное антиспастическое, болеутоляющее, ганглиоблокирующее и сосудорасширяющее действие, способствовать повышению трофической функции вегетативной нервной системы. Воздействия импульсными токами применяют для: нормализации функционального состояния ЦНС и ее регулирующего влияния на различные системы организма; получения болеутоляющего эффекта при воздействии на периферическую нервную систему; стимуляции двигательных нервов, мышц и внутренних органов; усиления кровообращения, трофики тканей, достижения противовоспалительного эффекта и нормализации функций различных органов и систем.

Реобаза-Наименьшая (пороговая) величина напряжения электрического тока, достаточная для того, чтобы вызвать возбуждение живой ткани

Хронаксия (греч. chronos – время + греч. axia – пена, мера) – наименьшее время, в течение которого постоянный электрический ток с напряжением вдвое больше, чем пороговое (реобаза), действуя на живую ткань, вызывает возбуждение.

ЭЛЕКТРОСТИМУЛЯЦИЯ — ЭЛЕКТРОСТИМУЛЯЦИЯ, метод электролечения применение импульсов электрического тока минимальной силы для возбуждения или усиления функции того или иного органа (например, электростимуляция матки с целью активизации родовой деятельности)

5. См в тетр

Физические основы ЭКГ

Основные функции сердца:

функция автоматизма - способность генерировать импульсы при отсутствии внешних раздражителей. Функцией автоматизма обладают клетки синоатриального узла и проводящей системы сердца. Выделяют центры автоматизма 1-го порядка -синоатриальный узел, 2-го - АВ узел, 3-го - нижняя часть п. Гиса и ножек Пуркинье (см. рис. ). Функция проводимости - способность к проведению импульсов. Ею обладают проводящая система сердца и сократительный миокард.

функция возбудимости - это способность сердца возбуждаться под влиянием импульсов. функция сократимости - способность миокарда сокращаться под влиянием возбуждения.

Электрокардиограф воспринимающее устройство - элекроды на теле больного усилитель гальванометр

регистрирующее устройство - регистрирует ЭКГ блок питания

 

· 6. Ток смещения (электродинамика) — величина, пропорциональная быстроте изменения индукции электрического поля.

нагрев диэлектриков в переменном электрическом поле. При наложении переменного электрического поля в диэлектриках появляется ток смещения, вызванный их поляризацией, и ток проводимости, обусловленный наличием в диэлектрике свободных электрически заряженных частиц. Протекание суммарного тока приводит к выделению тепла.

Первое уравнение Максвелла об этом и говорит:
rotH=jпр + dD/dt.
Математическая операция rotH (rot-ротор, или вихрь) означает: на направление (вектор) тока " надевается" маленькое воображаемое колечко (рис. 9, а). Значение касательной к колечку, т. е. составляющей напряженности магнитного поля Н, умножается на длину окружности (колечка) и делится на площадь этого колечка. Ротор Н отличен от нуля только для вихревого поля с кольцеобразными замкнутыми силовыми линиями. Показанный на рисунке вектор jпp обозначает плотность протекающих сквозь колечко реальныхтоков проводимости, т. е. токов, которые протекают в токопроводящей среде (например в металле):
jпр = E
где — проводимость среды, Е — напряженность электрического поля.
Но магнитное поле Н создается не только токами проводимости, но и изменениями вектора электрической индукции D. Это изменение D отражено в формуле rot H=dD/dt, что означает: очень малая часть вектора D (обозначено dD) изменяется в очень малое время dt. Вектор в любой среде связан с напряженностью электрического поля:
D = 0E.
Производную по времени D (которая может быть обозначена как dD/dt) Максвелл назвал током смещения jсм. Он при этом имел ввиду, что под действием колебаний электрического поля заряды, находящиеся в среде, смещаются от своего положения равновесия. Таким образом, вектор тока, как и показано на рис. 9, а, состоит из двух составляющих: jпр+jсм.

7. Второе уравнен ие Максвелла выражает закон электромагнитной индукции Фарадея: ЭДС в любом замкнутом контуре равна скорости изменения (т. е. производной по времени) магнитного потока. Но ЭДС равна касательной составляющей вектора напряженности электрического поля Е, помноженной на длину контура. Чтобы перейти к ротору, как и в первом уравнении Максвелла, достаточно разделить ЭДС на площадь контура, а последнюю устремить к нулю, т. е. взять маленький контур, охватывающий рассматриваемую точку пространства (рис. 9, в). Тогда в правой части уравнения будет уже не поток, а магнитная индукция, поскольку поток равен индукции, помноженной на площадь контура.
Итак, получаем: rotE = — dB/dt.
Таким образом, вихревое электрическое поле порождается изменениями магнитного, что и подано на рис. 9, в и представлено только что приведенной формулой.
Третье и четвертое уравнения Максвелла имеют дело с зарядами и порождаемыми ими полями. Они основаны на теореме Гаусса, утверждающей, что поток вектора электрической индукции через любую замкнутую поверхность равен заряду внутри этой поверхности.

Основные положения этой теории

1. Магнитное поле с замкнутыми силовыми линиями порождается либо электрическим током, либо переменным электрическим полем.

2. Электрическое поле с замкнутыми силовыми линиями (т. е. вихревое) порождается переменным магнитным полем.

3. Силовые линии магнитного поля всегда замкнуты.

4. Электрическое поле с незамкнутыми линиями порождается электрическими зарядами.

 

8.

Электромагнитная волна - процесс распространения электромагнитного поля в пространстве.

 Уравнения электромагнитных волн

Свойства электромагнитной волны.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.