Хелпикс

Главная

Контакты

Случайная статья





«Радиация»



Дополнительной трудностью представляются возникающие солнечные вспышки, которые за несколько дней обеспечивают повышенную дозу облучения экипажу. В таких случаях космонавты должны укрыться в защищённом от ионизирующей радиации специальном помещении. Возможным нарушениям работоспособности техники, в особенности компьютерной, и проводных коммуникаций в течение этого времени следует уделять повышенное внимание.

Наиболее опасен солнечный ветер высокоэнергетическими частицами, которые имеют энергию 10—100 МэВ (в отдельных случаях до 1010 эВ). 90 % из них — протоны, 9 % альфа-частиц, остальное — электроны и ядра тяжёлых элементов. Плотность потока частиц очень мала, но скорость лежит в диапазоне от 300 до 1200 км/с (кратковременно). Частицы, движущиеся с такой скоростью, при попадании в организм человека могут повредить клетки и ДНК в их составе.

Попасть в «окно» как при полёте на Луну в программе «Аполлон», когда поток солнечного ветра минимален и не представил бы опасности, нельзя из-за большой продолжительности полёта на Марс. Увеличение защиты от радиации наращиванием экрана слишком сильно повлияет на массу корабля, величина которой для межпланетного перелёта является критичной.

В 1960-е года появилась идея использовать для защиты от ионизирующей радиации искусственное магнитное поле, но расчёты показали, что диаметр зоны действия магнитного поля должен быть более 100 км для эффективного отклонения тяжёлых заряженных частиц от космического корабля. Размеры и масса такого электромагнитабыли бы настолько большими, что проще было нарастить классическую защиту экранированием.

Но как показывают исследования международной группы учёных из лаборатории Резерфорда и Эплтона, мощность магнитного поля для эффективной защиты корабля может оказаться ниже, чем предполагалось ранее. Ими был разработан проект «Мини-магнитосферы», в предположении, что магнитное поле будет образовывать плазменный барьер из самих же частиц солнечной радиации. Новые частицы, влетая в магнитный пузырь, должны взаимодействовать с частицами, которые уже находятся в нём, и с магнитным полем Солнца, повышая эффективность защиты. Результат эксперимента и компьютерное моделирование, сделанное теми же учёными в 2007 году, подтвердили эту теорию, что для защиты экипажа достаточно магнитного поля размером в сотни метров. Следует отметить, что такой установке необязательно работать во время всего полёта, её достаточно включать при сильных солнечных вспышках.

 

 

Пыль

На Красной планете отчасти представляют опасность песчаные бури, возникающие из-за большого колебания давления (до 10 %), механизмы изменения которого ещё точно не понятны. Ввиду отсутствия метеорологического спутника, предупреждения о бурях невозможно сделать за достаточное время до их начала. Наконец другие погодные явления, как и свойства грунта планеты, полностью не изучены.

Марсианская пыль хоть и менее абразивна, чем лунная, но всё равно может отрицательно сказаться на здоровье космонавтов при попадании в лёгкие. Из-за очень малого размера частиц от неё очень трудно изолироваться. Так космонавты программы «Аполлон» на следующий же день замечали присутствие пыли в спускаемом аппарате. Кроме того, марсианская пыль содержит 0, 2 % хрома. Многие соединения хрома не опасны, но есть вероятность присутствия солей хромовой кислоты, которые являются сильными канцерогенами.

Для электроники же опасность заключается в электростатических свойствах марсианской пыли. Например, разряд, проскочивший между скафандром космонавта и кораблём, способен повредить электронику первого. Предполагается, что электростатический заряд накапливается из-за постоянного трения с пылью. Здесь вносят свой вклад и песчаные бури. Так как на Марсе нет воды в жидком виде, то заземление не поможет, но некоторые учёные уже предлагают способы решения этой проблемы.

Палеонтолог Ларри Тэйлор университета Теннесси провёл опыт с лунным грунтом. Он облучил грунт микроволновым излучением в течение 30 секунд при мощности в 250 Вт и выяснил, что этого достаточно, чтобы пыль спеклась, образовав похожую на стекло плёнку. Это происходит из-за содержания частиц железа размерами в нанометры, которые мгновенно реагируют на излучение. На основе этого принципа можно было бы сделать специальную тележку, которая ехала бы впереди космонавтов, «убирая» пыль.

Для нейтрализации электростатического заряда есть способ, который уже используется на марсоходах. Суть заключается в установке на объекте, с которого необходимо снять заряд, тонких игл размером около 0, 02 миллиметра. По ним заряд убегает в марсианскую атмосферу.

Физик Джефри Лэндис из НАСА предложил другой, более действенный способ отвода электростатического заряда. Можно использовать небольшой радиоактивный источник, который бы крепился к сооружению базы или скафандру. Благодаря альфа-частицам низкой энергии, атмосфера вокруг этого прибора будет ионизироваться и станет электропроводящей.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.