|
|||
МАТЕРИАЛЫ. ДЛЯ СТУДЕНТОВ ЗАОЧНОГО ОТДЕЛЕНИЯ. СПбГЭТУ (ЛЭТИ). 1. ПРОГРАММА КУРСА.. ЭЛЕМЕНТАРНЫЕ СВОЙСТВА ВЕРОЯТНОСТИ. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. Математическая статистикаСтр 1 из 2Следующая ⇒
МАТЕРИАЛЫ ДЛЯ СТУДЕНТОВ ЗАОЧНОГО ОТДЕЛЕНИЯ СПбГЭТУ (ЛЭТИ) Курс «Теория вероятностей и математическая статистика»
Кафедра ВМ-2 Курс 3 Семестр 5
Санкт-Петербург 2009 г.
1. ПРОГРАММА КУРСА. ЭЛЕМЕНТАРНЫЕ СВОЙСТВА ВЕРОЯТНОСТИ Элементы комбинаторики. Классическое и геометрическое определения вероятности. Действия над событиями. Основные свойства вероятности. Условная вероятность, независимость событий. Формулы полной вероятности и Байеса. Схема Бернулли, предельные теоремы для схемы Бернулли: теорема Пуассона и теоремы Муавра-Лапласа.
СЛУЧАЙНЫЕ ВЕЛИЧИНЫ Аксиомы теории вероятностей. Случайные величины. Дискретные и абсолютно непрерывные случайные величины. Примеры: случайные величины, имеющие биномиальное, пуассоновское, равномерное, показательное, нормальное распределения. Числовые характеристики случайных величин. Вычисление их для классических распределений: распределения Бернулли, биномиального, пуассоновского, равномерного для конечной совокупности, равномерного, показательного, нормального. Случайные векторы и их распределения. Независимость случайных величин. Нормальный случайный вектор. Вектор, имеющий равномерное распределение в ограниченной области. Вычисление распределений одномерных компонент случайных векторов. Неравенство Чебышева. Закон больших чисел. Центральная предельная теорема. Коэффициент корреляции. Условные распределения и условные математические ожидания. Математическая статистика Общая статистическая модель. Выборка. Выборочные характеристики: выборочное математическое ожидание, выборочная дисперсия, выборочные моменты, выборочная медиана. Выборочный подход к построению оценок. Примеры. Другие методы нахождения оценок: метод моментов, метод максимального правдоподобия, оценки метода наименьших квадратов. Основные требования к оценкам: состоятельность, несмещенность. Общие понятия эффективности оценок. Доверительные интервалы. Примеры: Доверительный интервал для математического ожидания нормальной выборки при известной и неизвестной дисперсии. Доверительный интервал для дисперсии при известном и неизвестном математическом ожидании. Проверка простых гипотез. Критерии Стьюдента. Примеры. Непараметрические критерии: критерий Колмогорова и критерий (хи-квадрат). Критерий при наличии мешающих параметров. Техника использования различных статистических таблиц.
|
|||
|