|
|||
11). Чему равенarcctg(-1)?. 12). При каких значениях x можно использовать выражение arcsin x?. 13). Какое уравнение не имеет корней?. 3). Что является целым числом в x = 2πn?. 5). Для какого выражения подходит область значений (− ; )?. 7). Каки ⇐ ПредыдущаяСтр 2 из 2 11). Чему равенarcctg(-1)? а) б) в) − г) 0
12). При каких значениях x можно использовать выражение arcsin x? а) − 1⩾ x⩾ 1 б) − 1⩽ x⩽ 1 в) 0> x> 1 г) − 1< x> 1 13). Какое уравнение не имеет корней? а) sinx = 0 б) cosx = − в) sin6x = 0, 6 г) sinx =
Тригонометрические уравнения. 2 вариант 1). Какое решение имеет тригонометрическое уравнение cos(x) = a, если |a| ⩽ 1? a) x = (-1)n arcsin(a) + π n б) x = ±arccos(a) + 2π n в) x = arcsin(a)n + π n г) x = 2π n
2). Решите уравнение tg5x = а) x = 5π n, n∈ ℤ б) x = + , n∈ ℤ в) x = - π n, n∈ ℤ г) x = -π + π n, n∈ ℤ
3). Что является целым числом в x = 2π n? а)n б) 2 в) π г)x
4). Какой способ решения как основной можно применить для уравнения: x + 2sinx − 3 = 0? а) способ разложения на множители б) способ однородных уравнений в) способ с применением ограниченности суммы г) способ замены переменной
5). Для какого выражения подходит область значений (− ; )? а) 3arctg(-x) б) arcsinx в)arctgx г) arccosx
6). Чему равенcos + 2π n) = … а) 1 б) 0 в) -2 г) 7
7). Каким знаком обозначается множество целых чисел? а) Z б) ∈ в) = г) N
8). Какое значение имеет x в уравнении cos x = 1? а) π + 2π n, n ∈ ℤ б) − π n, n ∈ ℤ в) 2π + , n ∈ ℤ г) 2π n, n ∈ ℤ
9). Чему равен результат выражения sin2x − 2 + cos2x после упрощения? а) 0 б) 1 в) − 1 г) cos2x
10). Решите уравнение tgx = 0 а) x = − 2π n, n∈ ℤ б) x = π n, n∈ ℤ в) x = + π n, n∈ ℤ г) x = 2π n, n ∈ ℤ 11). Чему равенarccos(− )? а) б) в) − г) 0
12). При каких значениях x можно использовать выражение arccos x? а) − 1⩾ x⩾ 1 б) )− 1< x> 1 в) 0> x> 1 г) − 1⩽ x⩽ 1
13). Какое уравнение не имеет корней? а) sinx = 0 б) cosx = − в) sin6x = 1, 6 г) sinx =
|
|||
|