Хелпикс

Главная

Контакты

Случайная статья





Венецкий С.И. 20 страница



Впервые ртуть была заморожена в 1759 году. В твердом состоянии она представляет собой серебристо-синеватый металл, напоминающий по внешнему виду свинец. Если ртуть налить в форму, имеющую очертания молотка, а затем быстро охладить до затвердевания, например, жидким воздухом, то ртутным молотком можно с успехом забить гвоздь в доску, но при этом нужно торопиться, поскольку такой инструмент весьма недолговечен и может растаять на глазах.

Ртуть — самая тяжелая из всех известных жидкостей: ее плотность 13, 6 грамма на кубический сантиметр. Это значит, что литровая бутылка ртути весит больше, чем ведро с водой. Если бы какому-нибудь штангисту пришлось опустить свою стальную штангу не на помост, а в резервуар с ртутью, то этот тяжелейший снаряд не утонул бы в ней, а остался бы покачиваться на поверхности жидкого металла, как пробка в воде: ведь железо значительно легче ртути.

Человек знаком со ртутью с доисторических времен. Она упоминается в трудах Аристотеля, Теофраста, Плиния Старшего, Витрувия и других древних ученых. Латинское название этого металла " гидраргирум".

в I веке н. э., означает в переводе " серебряная вода". В том, что именно врач имел в те времена дело со ртутью, нет ничего удивительного: еще в древности были хорошо известны ее лекарственные свойства. Правда, порой применение ртути в лечебных целях носило весьма оригинальный характер. В литературе описаны, например, случаи, когда при завороте кишок больному вливали в желудок некоторое количество ртути (200-250 граммов). По мнению древних эскулапов, предлагавших такой способ лечения, ртуть благодаря своей тяжести и подвижности должна была пропутешествовать по хитросплетениям кишок и расправить своей тяжестью их перекрутившиеся части. Можно представить, к каким результатам приводили подобные эксперименты.

В наши дни заворот кишок устраняют другими, более надежными способами, но различные соединения ртути и сейчас широко применяют в медицине: так, сулема обладает дезинфицирующими свойствами; каломель служит слабительным; меркузал используют как мочегонное средство; некоторые ртутные мази употребляют при кожных и других заболеваниях.

Однако ртуть может оказывать на организм не только целительное, но и губительное воздействие: многие соединения и пары этого элемента вызывают порой острое отравление либо постепенно разрушают здоровье и психику человека. Медики установили, что ртутная интоксикация обычно приводит к неоправданным вспышкам гнева. Это дало повод историкам выдвинуть следующую гипотезу: поскольку царь Иван Грозный, мучившийся болями в суставах, долгое время пользовался ртутными мазями, именно они-то и были' причиной его необузданной вспыльчивости, частых гневных приступов, в один из которых царь убил своего сына. Симптомы ртутного отравления проявлялись и в других особенностях самодержца — постоянных галюцинациях, мнительности, не покидавшем его ощущении близкой беды. Паталогоанатомическое исследование царских останков подтвердило правомерность такой точки зрения: в костях оказалось повышенное содержание ртути.

Ртуть сыграла роковую роль в судьбе и других европейских монархов. В XVI веке Швецией правил король Эрих XIV. В 1568 году он был свергнут с престола своим братом Иоанном III, стремившимся захватить власть любой ценой. В некоторых исторических документах, дошедших до наших дней, содержатся намеки на то, что Эрих XIV был отравлен. Шведские ученые решили проверить, так ли это. Но каким образом воссоздать картину событий, происшедших более четырех столетий назад? Благодаря современным методам анализа, основанным на достижениях ядерной физики, невозможное стало возможным. Поскольку останки короля сохранились, его волосы подвергли тщательному исследованию. И что же выяснилось? Содержание ртути в волосах значительно превышало норму и, таким образом, версия об отравлении Эриха XIV получила убедительное научное подтверждение.

Как установили историки, изучавшие архивы XVII века, ртутное отравление было причиной смерти и английского короля Карла II из династии Стюартов. Правда, в этом случае виноват был сам пострадавший. Увлекшись алхимическими идеями, король оборудовал при дворе лабораторию, где проводил все свободное от государственных дел и охоты время, прокаливая и перегоняя ртуть, пользовавшуюся у алхимиков большой популярностью. Ученым удалось найти документы, в которых описывались симптомы болезни Карла II: раздражительность, судороги, хроническая уремия. Эти недуги вызываются длительным воздействием ртутных паров. Спасти короля не удалось, хотя придворные исцелители перепробовали все самые надежные средства тогдашней медицины: кровопускание, хинин и даже прикладывание к голове горячих утюгов.

Известен и такой факт: в 1810 году на английском корабле " Триумф" более двухсот человек отравились ртутью, вылившейся из бочки.

Не удивительно, что в СССР и многих других странах некоторые производства, связанные с применением ртути и ее соединений, например изготовление ртутных красок, категорически запрещены законом. В тех случаях, когда без ртути не обойтись, проводят различные профилактические мероприятия, которые предохраняют здоровье рабочих от ее вредного воздействия.

Природа не богата ртутью. Иногда она встречается в самородном состоянии — в виде мельчайших капелек. Основной ртутный минерал — киноварь. Это красивый камень, словно покрытый алыми пятнами крови. С киноварью связан любопытный эпизод. Вы уже знаете, что в последнее время геологи проводят эксперименты по использованию собак для поисков полезных ископаемых. Когда группа овчарок прошла курс обучения, им устроили нечто вроде экзамена: среди многих образцов они должны были найти киноварь. Собаки быстро обнаруживали этот минерал, но не успокаивались на достигнутом: все они, словно сговорившись, принимали за киноварь еще и розовый кальцит. Геологи сначала снисходительно посмеивались, но затем решили выяснить причину этой общей ошибки экзаменующихся. И что же оказалось? Внутри розового кальцита находились вкрапления киновари — реноме четвероногих " геологов" было восстановлено.

Крупнейшее в мире ртутное месторождение Альмаден находится в Испании, на долю которой до недавнего времени приходилось около 80 % мировой добычи ртути. Плиний Старший упоминает в своих сочинениях, что Рим закупал в Испании ежегодно несколько тонн ртути.

Одно из старейших в нашей стране ртутных месторождений — Никитовское — находится в Донбассе. Здесь на различной глубине (до 20 метров) обнаружены древние горные выработки, в которых можно было найти и орудия труда — каменные молотки.

Еще более древний рудник Хайдаркан (" Великий рудник" ) расположен в Ферганской долине (Киргизия), где также сохранились многочисленные следы древних работ: крупные выработки, металлические клинья, светильники, глиняные реторты для обжига киновари, большие отвалы образующихся при этом огарков. Археологические раскопки показывают, что в Ферганской долине ртуть добывали на протяжении многих столетий и лишь в XIII —XIV веках, после того, как Чингисхан и его преемники уничтожили здесь ремесленно-торговые центры, а население перешло на кочевой образ жизни, добыча руды в Фергане была прекращена.

В Средней Азии разрабатывались и другие месторождения ртути. Так, например, надписи во дворце древнеперсидских царей Ахеменидов (VI-IV века до н. э. ) в Сузах говорят о том, что киноварь, которую в те времена использовали главным образом как краситель, доставляли сюда с Зеравшанских гор, расположенных на территории современных республик Таджикистана и Узбекистана. По-видимому, ртуть добывали здесь еще в середине первого тысячелетия до н. э.

Тяжелым и вредным был раньше труд горняков. У Киплинга есть такие строки: " Я худшую смерть предпочту работе на ртутных рудниках, где крошатся зубы во рту... ". До сих пор в лабиринтах горных выработок, где в древности добывали ртуть, можно встретить множество скелетов. Дорогой ценой — тысячами жизней — приходилось расплачиваться с горами за красный камень, будто обагренный кровью тех, кто пытался проникнуть к ртутным сокровищам.

Значительно возросла добыча ртути в средние века — в период повсеместного увлечения алхимией. Интерес, который проявляли к ртути алхимики, объяснялся тем, что, по одной из их теорий, ртуть, сера и соль были возведены в ранг " первородных элементов". Ртути приписывалось " материнское начало": "... с помощью теплоты лед растворяется в воду, значит, он из воды; металлы растворяются в ртути, значит, ртуть — первичный материал этих металлов".

Итак, алхимикам, вооруженным столь солидной научной теорией, оставалось лишь найти " философский камень" (при помощи которого можно было бы превращать ртуть в золото) и, засучив рукава, приниматься за работу. Но вот беда: поиски " философского камня" затянулись несмотря на то, что в их удачном исходе были заинтересованы такие влиятельные особы, как английский король Генрих VI, император Священной Римской империи Рудольф II и другие европейские монархи, создававшие у себя при дворе крупные алхимические лаборатории.

Правда, кое-какие плоды эти исследования все же принесли: придворный алхимик Генриха VI обнаружил, что натертая ртутью медь приобретает серебристый оттенок, и король оперативно внедрил это открытие в жизнь: он выпустил под видом серебряных большую партию медных монет, покрытых ртутью, прикарманив при этом солидную сумму.

Время от времени в разных странах появлялись лица, якобы овладевшие тайной " философского камня". Иногда это были заблуждавшиеся ученые, а чаще — шарлатаны, знавшие немало способов " получения" искусственного золота. Один из них заключался в следующем. На глазах присутствующих алхимик помешивал в тигле расплавленный свинец или ртуть деревянной палочкой, в которую были предварительно спрятаны кусочки золота. Частично это золото растворялось в расплавленном металле. После " эксперимента" в тигле, естественно, можно было обнаружить следы золота, которое свидетельствовало, а точнее лжесвидетельствовало, о чудесном превращении. Однако слухи об этих кудесниках рано или поздно доходили до правителя страны, и тогда им приходилось либо признаваться в обмане, либо организовывать при дворе массовое производство золота, а уж тут деревянная палочка была плохим помощником.

Уличенного во лжи алхимика обычно казнили так же, как фальшивомонетчиков, — на позолоченной виселице, в одежде, усыпанной блестками. Впрочем, были и другие варианты казни. В 1575 году, например, герцог Люксембургский сжег заживо в железной клетке женщину-алхимика Марию Зиглерин за отказ сообщить ему состав " философского камня", который она по вполне понятным причинам не знала, хотя и утверждала на свою беду обратное.

Спустя некоторое время алхимия была предана проклятию католической церковью и официально запрещена в Англии, Франции и других странах. Но подпольные алхимические эксперименты не прекращались, продолжались и казни. Под горячую руку попал французский химик Жан Барилло, который был казнен только за то, что изучал в своей лаборатории химические свойства элементов. Его опыты показались подозрительными, и судьба ученого была тотчас же решена.

В дошедших до наших дней алхимических рецептах ртуть часто называют Меркурием. Это название было дано металлу еще в Древнем Риме за способность капелек ртути быстро бегать по гладкой поверхности, чем она, по мнению римлян, напоминала хитрого, ловкого и изворотливого бога Меркурия — покровителя торговли. Кстати, и другие элементы в алхимической литературе были зашифрованы: золото обозначалось символом Солнца, железо — Марса, медь — Венеры и т. д. Таким образом алхимики скрывали свои знания от посторонних, которые не были знакомы с их символикой.

Способность ртути растворять многие металлы, образуя так называемые амальгамы, была замечена еще до нашей эры. Амальгамы помогли английскому ученому Гемфри Дэви впервые в истории выделить в свободном виде барий, стронций, магний: он сначала получал амальгамы этих элементов, а затем уже отделял их от ртути.

Амальгамы использовали для покрытия медных церковных куполов тончайшим слоем золота. Таким способом был позолочен, например, купол великолепного Исаакиевского собора, созданного в 1818-1858 годах в Петербурге по проекту Огюста Монферрана.

Более 100 килограммов червонного золота было нанесено амальгамацией на медные листы, из которых выполнен гигантский, диаметром около 26 метров, купол этого собора. Поверхность медных листов тщательно очищали от жира, шлифовали и полировали, а затем покрывали амальгамой — раствором золота в ртути. После этого листы нагревали на специальных жаровнях до тех пор, пока ртуть не испарялась, а на листе при этом оставалась тонкая (в несколько микрон) пленка золота. Но легкий синевато-зеленый дымок паров ртути, который, казалось, бесследно исчезал, успевал отравить рабочих, занимавшихся позолотой. И хотя по правилам тогдашней техники безопасности позолотчики пользовались стеклянными колпаками, эта " спецодежда" не могла спасти от отравления. Люди погибали в страшных муках. По свидетельству современников, золочение купола стоило жизни десяткам рабочих.

С амальгамами связаны не только печальные факты, но и забавные истории. Рассказывают, будто бы в начале нашего века один исследователь пытался получить золото из ртути, воздействуя на ее пары мощными электрическими разрядами. Много времени и труда потратил он, и вот, наконец, пришел успех: в ртути появились первые следы золота. Радость экспериментатора не знала границ. Каково же было разочарование, когда выяснилось, что золото попало в ртуть с... золотой оправы его собственных очков. Поправляя время от времени очки руками, на которых были мельчайшие капельки ртути, ученый переносил золото в виде амальгамы в исследуемую ртуть.

Амальгамы и сейчас применяют в ряде случаев для золочения металлических изделий (разумеется, при этом дело обходится без жертв), в производстве зеркал, в зубоврачебном деле, в лабораторной практике. Из ртутной соли гремучей кислоты (гремучей ртути). изготовляют взрывчатые вещества.

Широко применяют в технике ртуть и в чистом виде. В химической промышленности, например, она участвует в производстве хлора, едкого натра, синтетической уксусной кислоты. Весьма надежны и долговечны ртутные вентили, служащие для выпрямления переменного тока. В автоматической и измерительной аппаратуре используют ртутные выключатели, которые обеспечивают мгновенное замыкание и размыкание электрической цепи. Ртутно-кварцевые лампы позволяют получить интенсивное ультрафиолетовое излучение. В медицине эти лампы служат для обезвреживания воздуха в операционных залах, для облучения организма человека в лечебных целях.

Разреженными парами ртути с добавкой аргона наполнены стеклянные трубки люминесцентных ламп. Еще до войны была предпринята попытка использовать ртутные лампы для освещения улицы Горького в Москве. Но вскоре от этих ламп пришлось отказаться, так как излучаемый ими мертвенно-бледный свет придавал лицам людей малопривлекательный землистый оттенок, а губная помада, например, из красной превращалась в зеленую. В дальнейшем удалось разработать специальные составы — люминофоры, которые, будучи нанесенными на внутреннюю поверхность ламп, позволяют получать свет различной окраски, в частности белый свет, очень близкий к дневному.

Ртуть оказалась причастной к одному из важнейших научных открытий нашего столетия — открытию явления сверхпроводимости. В 1911 году голландский физик и химик Хейке Камерлинг-Оннес, изучая свойства различных веществ при низких температурах, обнаружил, что вблизи абсолютного нуля, точнее при 4, 1 К, ртуть полностью перестает оказывать сопротивление электрическому току. Спустя два года ученый был удостоен Нобелевской премии.

Столь же высоко были отмечены в 1922 году научные заслуги чешского химика Ярослава Гейровского, открывшего полярографический метод химического анализа, в котором ртуть играет далеко не последнюю роль.

Ртуть — главное действующее лицо во многих физических приборах — манометрах, барометрах, вакуумных насосах. Но, пожалуй, наиболее распространенные ртутные приборы — это термометры.

В XVII веке, когда были созданы первые приборы для измерения температуры, рабочей жидкостью в них служила вода, но на холоде она замерзала, стекло разлеталось вдребезги и термометры выходили из строя. Тосканский герцог Фердинанд II, по-видимому достаточно хорошо знакомый с винным спиртом, предложил использовать его вместо воды — термометры стали более надежными, но, поскольку качество спирта не всегда было одинаковым, в показаниях приборов наблюдались заметные расхождения. Первым, кто начал измерять температуру при помощи ртути, был французский физик Амонтон. Спустя несколько лет, в 1724 году, немецкий физик Фаренгейт создал свой ртутный термометр со шкалой, которая до сих пор используется в Англии и США.

В наше время ртутные термометры имеют самое разнообразное назначение. От этого зависит конструкция термометра, в частности толщина капилляра, по которому перемещается ртуть. Самый тонкий капилляр у медицинского градусника — всего 0, 04 миллиметра. Чтобы этот тончайший столбик ртути можно было заметить невооруженным глазом, капилляр делают в форме трехгранной увеличительной призмы, а на ею заднюю стенку наносят " экран" — полоску белой эмали.

Поскольку ртуть не должна опускаться, пока ее не стряхнешь, нужно в каком-то месте канал сузить, но и без того узкий трехгранник сужать уже нельзя. Поэтому к нему снизу припаивают маленькую цилиндрическую трубку и в ней делают пережим.

Применяемая для термометров ртуть должна отличаться особой чистотой: ведь малейшие примеси могут существенно исказить показания. Вот почему ртуть подвергают специальной обработке, промывают, дистиллируют и только после этого заполняют его стеклянные капилляры.

Кстати, несмотря на хрупкость стекла, оно пока является незаменимым в этом случае материалом. Использовать вместо него, допустим, прозрачную пластмассу нельзя: она, как решето, пропускает губительный для ртути кислород.

Заполнение капилляра ртутью — очень ответственная операция: в трубку не должен попадать воздух. Раньше, когда этот процесс выполняли вручную, мастерам приходилось по нескольку недель нагревать поочередно то один, то другой конец заполненной ртутью стеклянной трубочки, изгоняя оттуда воздушные пузырьки. Сейчас с этим делом быстро и успешно справляются машины.

Прежде чем попасть к месту своей будущей работы, термометры проходят еще много испытаний и проверок. Увы, некоторых из них ждет печальный приговор: " Брак". Жизненный путь этого неудачника тут же заканчивается в корзине для отходов. Но зато можно не сомневаться в точности тех термометров, которые выдержали все экзамены и получили своего рода аттестат зрелости — заводское клеймо. Беспристрастная капелька ртути, заключенная в стеклянный капилляр, будет верно служить науке, промышленности, сельскому хозяйству, медицине.

За свою многовековую историю производство ртути прошло длинный путь. Когда-то ртутную руду обжигали в глиняных горшках, а испаряющаяся при этом ртуть конденсировалась на листьях свежесрубленных деревьев, устанавливаемых около горшочков в кирпичных камерах. Сейчас на заводах действуют автоматические агрегаты для непрерывного получения ртути. Рабочему достаточно нажать кнопку дистанционного управления, и тонны ртутного концентрата заполнят бункер огромной электрической печи. В ней при температуре в сотни градусов ртуть начинает испаряться из концентрата. Пары затем охлаждают, и образовавшаяся ртуть поступает в специальный резервуар.

В дальнейшем металл подвергают окончательной очистке и заливают в стальные баллоны, вмещающие по 35 килограммов. Особо чистую (рафинированную) ртуть высшего качества разливают в фарфоровые стаканы — по 5 килограммов в каждый. В таком виде, она поступает на склад готовой продукции.

Здесь " серебряная вода" получает путевку в жизнь.

 

Бдительные гуси. – Печальная судьба патрициев. — На службе инквизиции. — Секреты брахманов. – Крики ужаса на Мосту вздохов. — Веский аргумент. — Восемьдесят лет под водой. — Недопустимая " самодеятельность". – Тучи над городом встали. — В снегах Гренландии. — Ледяной столб. — В наборной кассе. — Увесистые письма. — Под звон хрусталя. — " Made in Rodos". — Пожар в афинском порту. – Бывают ли чудеса? — Проделки " перуанского художника". – Ядовитый " сахар". – В нападении и защите. — " Мини" -иллюминатор. — Находка под слоем золы. — Жуки работают без " перекуров". – В садах Семирамиды. — Один на десять миллионов. — Зачем нужна конспирация? — Фамильные узы. — Кошку назвали кошкой.

 

Рим спасли гуси — это известно всем. Бдительные птицы своевременно, заметили приближение неприятельских войск и тотчас резкими гортанными звуками сигнализировали об опасности. На этот раз для древних римлян все обошлось благополучно.

Тем не менее Римской империи суждено было впоследствии пасть. Что же послужило причиной падения некогда могущественного государства? Что погубило Рим?

" Древний Рим отравился свинцом", — к такому выводу пришли некоторые американские и канадские ученые-токсикологи. По их мнению, использование свинцовой посуды (бутылей, бокалов, чаш) и косметических красок, содержащих соединения свинца, приводило к хроническому отравлению и вымиранию римской знати. Известно, что многие императоры, правившие Римом в первые столетия нашей эры, т. е. в последний период существования империи, страдали теми или иными психическими заболеваниями. Средняя продолжительность жизни римских патрициев не превышала 25 лет. Люди низших сословий в меньшей степени подвергались свинцовому отравлению, поскольку они не имели дорогой посуды и не употребляли косметических средств. Но и они пользовались знаменитым водопроводом, " сработанным еще рабами Рима", а трубы его, как известно, были сделаны из свинца.

Люди вымирали, империя чахла. Разумеется, виноват в этом был не только свинец. Существовали и более серьезные причины — политические, социальные, экономические. И все же доля истины в рассуждениях американских ученых безусловно есть: обнаруживаемые при раскопках останки древних римлян содержат большие количества свинца.

Все растворимые соединения этого элемента ядовиты. Установлено, что вода, которая питала Древний Рим, была богата углекислым газом. Реагируя со свинцом, он образует хорошо растворимый в воде кислый углекислый свинец. Поступающий даже в малых порциях в организм свинец задерживается в нем и постепенно замещает кальций, который входит в состав костей. Это приводит к хроническим заболеваниям.

На " совести" свинца лежит не только погубленный Рим, но и другие темные дела. Во времена разгула инквизиции иезуиты использовали расплавленный свинец как орудие пыток и казни. В Индии еще в начале прошлого века, если человек низшей касты сознательно или нечаянно подслушивал чтение священных книг брахманов, ему вливали в уши расплав свинца (чтобы сохранить свою власть над народом, жрецы Вавилона, Египта, Индии издавна держали свои знания в глубокой тайне).

В Венеции сохранилась средневековая тюрьма для государственных преступников, соединенная Мостом вздохов с замечательным памятником архитектуры — Дворцом дожей. На чердаке тюрьмы имелись специальные камеры под свинцовой крышей — для особо провинившихся. Летом узники здесь изнывали от жары, зимой — стыли от холода. А на Мосту вздохов слышны были крики ужаса...

С тех пор как изобрели огнестрельное оружие и из свинца начали отливать смертоносные пули для ружей и пистолетов, он стал одним из самых " веских аргументов" в споре враждующих сторон. Свинец не раз решал исход и грандиозных военных баталий, и мелких гангстерских потасовок.

Может сложиться впечатление, что, кроме вреда, от свинца ничего не дождешься, и поэтому ближайшая и главная задача человечества — полностью избавиться от этого злого металла, принесшего уже столько бед и горя. Но люди почему-то не стремятся к такому избавлению, а, напротив, постоянно расширяют производство свинца. Из всех цветных металлов лишь алюминий, медь и цинк производятся в большем количестве, чем свинец. Какой же полезной деятельностью занимается этот металл?

История знает немало примеров, когда народы вели справедливые войны за свою свободу и независимость — и в этой борьбе им помогал свинец. Чтобы быть уверенным в надежности своих границ, необходимо иметь не только порох в пороховницах, но и все тот же свинец. Вот почему военное значение этого металла весьма велико.

Когда развитие техники привело к созданию автомобилей, подводных лодок, самолетов, возникновению химической и электротехнической промышленности, в производстве свинца произошел особенно резкий скачок.

Еще в 1859 году французский физик Гастон Планте изобрел химический источник тока — свинцовый аккумулятор. За прошедшие сто с лишним лет в мире изготовлено огромное количество этих простых, но надежных устройств для накопления энергии: примерно треть всей мировой добычи свинца расходуется на " нужды" аккумуляторов. Недавно английские водолазы, которые занимались подъемом подводной лодки, затонувшей еще в начале нашего века, нашли и подняли на поверхность свинцовый аккумулятор. Каково же было их удивление, когда выяснилось, что, пробыв под водой ни мало, ни много восемьдесят лет, он все еще дает ток. Оригинальный проект разработан в США: в штате Мичиган предполагается соорудить колоссальную по размерам батарею свинцовых аккумуляторов, на которую будет возложена ответственная миссия — удовлетворять потребность штата в энергии в часы пик. Заряжаться же эта " батарейка", весящая почти 3 тысячи тонн, будет в те часы, когда в потреблении энергии обычно наблюдается заметный спад.

Крупный потребитель свинца — топливная промышленность. В бензиновых двигателях горючую смесь, перед тем как поджечь, сжимают, и чем сильнее это сжатие, тем экономичнее работает двигатель. Но при значительной степени сжатия горючая смесь взрывается, не дожидаясь, когда ее подожгут. Естественно, такая " самодеятельность" недопустима. На помощь пришел тетраэтилсвинец. Небольшие добавки его к бензину (меньше 1 грамма на литр) предотвращают взрывы, заставляя топливо сгорать равномерно, а главное — в тот самый момент, когда это нужно.

Поскольку тетраэтилсвинец очень ядовит, этилированный бензин окрашивают в розовый, зеленый, оранжево-красный и другие (в зависимости от марки) цвета, чтобы отличить от обычного. К сожалению, значительные количества ядовитых веществ выбрасываются автомобильными двигателями с выхлопными газами. Ученые Калифорнийского технологического института (США) подсчитали, что над большими городами носятся целые тучи свинца (как видите, литературный эпитет " свинцовые тучи" может иметь и буквальный смысл): за год только над океанами и морями северного полушария выпадает около 50 тысяч тонн этого металла, образующегося главным образом из добавок к бензину. Вот вам и 1 грамм на литр! Свинец автомобильного происхождения был обнаружен даже в снегах Арктики. Специалисты давно подыскивают 'замену тетраэтилсвинцу и уже добились в этом кое-каких успехов.

Любопытны данные, полученные при анализе гренландского фирна (плотного снега). Пробы фирна брались из разных горизонтов, соответствующих тому или иному историческому периоду. В образцах, датированных VIII столетием до н. э., на каждый килограмм фирна обнаружено не более 0, 0000004 миллиграмма свинца (эта цифра принята за уровень естественного загрязнения, главный источник которого — вулканические извержения). Образцы, относящиеся к середине XVIII века (начало промышленной революции), содержали свинца уже в двадцать пять раз больше. В дальнейшем же началось настоящее " нашествие" этого элемента на Гренландию: содержание его в образцах фирна, взятых в верхних горизонтах, т. е. соответствующих нашему времени, в пятьсот раз превосходит естественный уровень.

Еще богаче свинцом вечные снега европейских горных массивов. Так, содержание его в фирне одного из ледников Высоких Татр за последние сто лет возросло примерно в пятнадцать раз. Если же исходить из уровня естественной концентрации, то оказывается, что в Высоких Татрах, находящихся рядом с промышленными районами, этот уровень превышен почти в двести тысяч раз!

Сравнительно недавно объектом исследования шведских ученых стали многовековые дубы, растущие в одном из парков в центре Стокгольма. Оказалось, что содержание свинца в деревьях, насчитывающих четыреста лет, в последнее время резко увеличилось вместе с ростом интенсивности автомобильного движения. Так, если в прошлом веке в древесине этих дубов содержалось всего 0, 000001 % свинца, то к середине XX века свинцовый " запас" удвоился, а к концу 70-х годов возрос уже примерно в десять раз. Особенно богата свинцом та сторона деревьев, которая обращена к автомобильным дорогам и, следовательно, более подвержена воздействию выхлопных газов.

На Всемирной выставке " Экспо-75", проходившей в Японии на острове Окинава, внимание посетителей привлекал необычный экспонат — тридцатиметровый столб льда, выпиленный из айсберга, возраст которого примерно три тысячи лет. Исследования, проведенные учеными Японии, США и СССР, показали, что в последние десятилетия айсбергу пришлось " приютить" немалое количество свинца — результат бурного развития автомобильного транспорта.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.