|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ПРАКТИЧЕСКАЯ РАБОТА №15. Алгоритм решения дифференциального уравнения первого порядка. Алгоритм решения дифференциального уравнения первого порядкаПРАКТИЧЕСКАЯ РАБОТА №15
Тема: Решение дифференциальных уравнений первого порядка с разделяющимися переменными. Цель работы: Закрепить и систематизировать знания по теме «Обыкновенные дифференциальные уравнения». Задание: Проверить подстановкой, что данная функция является общим решением (интегралом) данного дифференциального уравнения:
Задание: Найти общие решения дифференциальных уравнений методом разделения переменных:
Задание: Найти частные решения уравнений первого порядка, удовлетворяющие указанным начальным условиям:
Задание: Решить линейные уравнения первого порядка:
Задание: Найти частные решения однородных дифференциальных уравнений:
Пояснения к работе: Необходимые формулы: Алгоритм решения дифференциального уравнения первого порядка y' = f(x, y) с разделяющими переменными
где C − постоянная интегрирования.
Алгоритм решения дифференциального уравнения первого порядка вида
Содержание отчета
Контрольные вопросы: 1. Дайте определение дифференциального уравнения. 2. Дайте определение общего решения дифференциального уравнения. 3. Дайте определение дифференциального уравнения с разделяющими переменными. 4. Дайте определение дифференциального уравнения первого порядка. 5. Запишите формулу уравнение Бернулли.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|