|
|||
функция R является нечетной относительно cosx. ⇐ ПредыдущаяСтр 2 из 2 функция R является нечетной относительно cosx.
Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx.
Функция может содержать cosx только в четных степенях, а, следовательно, может быть преобразована в рациональную функцию относительно sinx.
Пример.
Для применения этого метода необходима только нечетность функции относительно косинуса, а степень синуса, входящего в функцию может быть любой, как целой, так и дробной.
Интеграл вида если функция R является нечетной относительно sinx.
По аналогии с рассмотренным выше случаем делается подстановка t = cosx. Тогда
Интеграл вида функция R четная относительно sinx и cosx. Для преобразования функции R в рациональную используется подстановка t = tgx. Тогда
Пример.
Интеграл произведения синусов и косинусов различных аргументов.
В зависимости от типа произведения применятся одна из трех формул:
Пример.
Интегрирование некоторых иррациональных функций Интеграл вида где n- натуральное число.
С помощью подстановки функция рационализируется. Тогда
Пример.
Если в состав иррациональной функции входят корни различных степеней, то в качестве новой переменной рационально взять корень степени, равной наименьшему общему кратному степеней корней, входящих в выражение. Пример.
|
|||
|