Хелпикс

Главная

Контакты

Случайная статья





ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕМЕНТОВ VI ГРУППЫ ГЛАВНОЙ ПОДГРУППЫ



ОБЩАЯ ХАРАКТЕРИСТИКА ЭЛЕМЕНТОВ VI ГРУППЫ ГЛАВНОЙ ПОДГРУППЫ

В подгруппу кислорода входит пять элементов: кислород, сера, селен, теллур и полоний (радиоактивный металл). Это р-элементы VI группы периодической системы Д.И.Менделеева. Они имеют групповое название – халькогены, что означает «образующие руды».

Свойства элементов подгруппы кислорода

  O S Se        Те Ро
Порядковый номер
Валентные электроны 2s24 Зs24  4s24  5s25p4  6s26p4
Относительная электроотрицательность 3,50       2,6         2,48       2,01 1,76  
Степень окисления в соединениях -1, -2, + -2, +2, +4, +6, -2, +4, +6, -2, +4, +6  -2, +2
Радиус атома, нм       0,066 0,104   0,117 0,137 0,164

           

У атомов халькогенов одинаковое строение внешнего энергетического уровня — ns24. Этим объясняется сходство их химических свойств. Все халькогены в соединениях с водородом и металлами проявляют степень окисления -2, а в соединениях с кислородом и другими активными неметаллами — обычно +4 и +6. Для кислорода, как и для фтора, не типична степень окисления, равная номеру группы. Он проявляет степень окисления обычно -2 и в соединении со фтором +2. Такие значения степеней окисления следуют из электронного строения халькогенов. У атома кислорода на 2р-подуровне два неспаренных электрона. Его электроны не могут разъединяться, поскольку отсутствует d-подуровень на внешнем (втором) уровне, т. е. отсутствуют свободные орбитали. Поэтому валентность кислорода всегда равна двум, а степень окисления -2 и +2 (например, в Н2О и ОF2). Таковы же валентность и степени окисления у атома серы в невозбужденном состоянии. При переходе в возбужденное состояние (что имеет место при подводе энергии, например при нагревании) у атома серы сначала разъединяются Зр-, а затем 3s-электроны (показано стрелками). Число неспаренных электронов, а, следовательно, и валентность в первом случае равны четырем (например, в SO2), а во втором — шести (например, в SO3). Очевидно, четные валентности 2, 4, 6 свойственны аналогам серы — селену, теллуру и полонию, а их степени окисления могут быть равны -2, +2, +4 и +6.

Водородные соединения элементов подгруппы кислорода отвечают формуле Н2R (R - символ элемента): Н2О, Н2S, Н2Sе, Н2Те. Они называются хальководородами. При растворении их в воде образуются кислоты. Сила этих кислот возрастает с ростом порядкового номера элемента, что объясняется уменьшением энергии связи в ряду соединений Н2R. Вода, диссоциирующая на ионы Н+ и ОН-, является амфотерным электролитом.

Сера, селен и теллур образуют одинаковые формы соединений с кислородом типа RО2 и RО3. Им соответствуют кислоты типа Н23 и Н24. С ростом порядкового номера элемента сила этих кислот убывает. Все они проявляют окислительные свойства, а кислоты типа Н23 также и восстановительные.

Закономерно изменяются свойства простых веществ: с увеличением заряда ядра ослабевают неметаллические и возрастают металлические свойства. Так, кислород и теллур — неметаллы, но последний обладает металлическим блеском и проводит электричество.

                                             

    КИСЛОРОД

Кислород (лат. Oxygenium), О, химический элемент VI группы периодической системы Менделеева; атомный номер 8, атомная масса 15,9994. Трудно назвать другой элемент, который играл бы на нашей планете такую важную роль, как кислород.

Кислород - самый распространенный химический элемент на Земле. Связанный кислород составляет около 6/7 массы водной оболочки Земли - гидросферы (85,82% по массе), почти половину литосферы (47% по массе), и только в атмосфере, где кислород находится в свободном состоянии, он занимает второе место (23,15% по массе) после азота. Кислород стоит на первом месте и по числу образуемых им минералов (1364); среди минералов, содержащих Кислород, преобладают силикаты (полевые шпаты, слюды и другие), кварц, оксиды железа, карбонаты и сульфаты. В живых организмах в среднем около 70% кислорода; он входит в состав большинства важнейших органических соединений (белков, жиров, углеводов и т. д.) и в состав неорганических соединений скелета. Исключительно велика роль свободного кислород в биохимических и физиологических процессах, особенно в дыхании. За исключением некоторых микроорганизмов-анаэробов, все животные и растения получают необходимую для жизнедеятельности энергию за счет биологического окисления различных веществ с помощью кислорода.

Кислород бесцветный газ, сгущающийся при -182,9°С и нормальном давлении в бледно-синюю жидкость, которая при -218,7°С затвердевает, образуя синие кристаллы. Плотность газообразного кислорода (при 0°С и нормальном давлении) 1,42897 г/л. Кислород мало растворим в воде: при 20°С и 1 ат в 1 м3 воды растворяется 0,031 м3, а при 0°С - 0,049 м3 кислорода. Хорошими твердыми поглотителями Кислорода являются платиновая чернь и активный древесный уголь.

 Будучи наиболее активным (после фтора) неметаллом, кислород взаимодействует с большинством элементов непосредственно; исключение составляют тяжелые инертные газы, галогены, золото и платина; их соединения с кислородом получают косвенным путем. Почти все реакции кислорода с других веществами - реакции окисления экзотермичны, то есть сопровождаются выделением энергии. С водородом при обычных температурах кислород реагирует крайне медленно: 2Н2 + О2 = 2Н2О.

С серой, углеродом, азотом, фосфором кислород взаимодействует при обычных условиях очень медленно. Реакция азота с кислородом благодаря особой прочности молекулы N2 эндотермична и становится заметной лишь выше 1200°С или в электрическом разряде: N2 + О2 = 2NO. Кислород активно окисляет почти все металлы, особенно легко - щелочные и щелочноземельные: 2Ba + O2= 2BaO

Кислород экзотермически взаимодействует со многими сложными веществами. Так, аммиак горит в кислороде в отсутствии катализаторов, реакция идет по уравнению: 4NH3 + ЗО2 = 2N2 + 6H2O. Особое значение имеет горение углеводородов (природного газа, бензина, керосина) - важнейший источник тепла в быту и промышленности, например СН4 + 2О2 = CO2 + 2H2O. Многие органические соединения (углеводороды с двойной или тройной связью, альдегиды, фенолы, а также скипидар, высыхающие масла и другие) энергично присоединяют кислород. Окисление кислородом питательных веществ в клетках служит источником энергии живых организмов.

Существует 3 основных способа получения кислорода:

1)химический: 2KMnO4 → K2MnO4 + MnO2 + O2↑; 2KClO3 → 2KCl + 3O2↑   

                                                                                                                                                                                                                                                                                               2)электролизный (электролиз воды) : 2Н2О → 2Н2 + О2↑ 

                                                                                                      3)физический (разделение воздуха).

 

                                                     СЕРА

Се́ра — элемент шестой группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. Sulfur). Сера является шестнадцатым по химической распространённости элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде.Важнейшие природные соединения серы: FeS2 — железный колчедан или пирит, ZnS — цинковая обманка или сфалерит (вюрцит), PbS — свинцовый блеск или галенит, HgS — киноварь, Sb2S3 — антимонит.

Это кристаллическая сера — хрупкое вещество жёлтого цвета. Кроме того, возможны молекулы с замкнутыми (S4, S6) цепями и открытыми цепями. Такой состав имеет пластическая сера, вещество коричневого цвета, которая получается при резком охлаждении расплава серы (пластическая сера уже через несколько часов становится хрупкой, приобретает жёлтый цвет и постепенно превращается в ромбическую). В воде сера нерастворима, некоторые её модификации растворяются в органических растворителях.

                  Химические свойства.

На воздухе сера горит, образуя сернистый ангидрид: S + O2 = SO2

Помимо кислорода, сера реагирует со многими неметаллами, однако при комнатной температуре сера — только со фтором, проявляя восстановительные свойства: S + 3F2 = SF6                                                        Расплав серы реагирует с хлором: 2S + Cl2 = S2Cl2; S + Cl2 = SCl2                                                                               При нагревании сера также реагирует с фосфором: 5S + 2P = P2S5                                                                        Кроме того, при нагревании сера реагирует с водородом, углеродом, кремнием:                                                            S + H2 = H2S (сероводород) ;C + 2S = CS2 (сероуглерод)

При нагревании сера взаимодействует со многими металлами, часто — весьма бурно:                                                  2Na + S = Na2S ; Ca + S = CaS ; 2Al + 3S = Al2S3 ; Fe + S = FeS

Из сложных веществ следует отметить прежде всего реакцию серы с расплавленной щёлочью: 3S + 6KOH = K2SO3 + 2K2S + 3H2O. Полученный плав называется серной печенью.

С концентрированными кислотами-окислителями (HNO3, H2SO4) сера реагирует только при длительном нагревании, окисляясь:

S + 6HNO3(конц.) = H2SO4 + 6NO2 ↑ + 2H2O

S + 2H2SO4(конц.) = 3SO2 ↑ + 2H2O

Серу получают главным образом выплавкой самородной серы непосредственно в местах её залегания под землёй. Серные руды добывают разными способами — в зависимости от условий залегания. Залежам серы почти всегда сопутствуют скопления ядовитых газов — соединений серы. К тому же нельзя забывать о возможности её самовозгорания.

Добыча руды открытым способом происходит так. Шагающие экскаваторы снимают пласты пород, под которыми залегает руда. Взрывами рудный пласт дробят, после чего глыбы руды отправляют на сероплавильный завод, где из концентрата извлекают серу.

В 1890 г. Герман Фраш, предложил плавить серу под землёй и через скважины, подобные нефтяным, выкачивать её на поверхность. Сравнительно невысокая (113 °C) температура плавления серы подтверждала реальность идеи Фраша. В 1890 г. начались испытания, приведшие к успеху.

 

                                              СЕЛЕН

Селе́н — химический элемент с атомным номером 34 в периодической системе, обозначается символом Se (лат. Selenium), хрупкий блестящий на изломе неметалл чёрного цвета (устойчивая аллотропная форма, неустойчивая форма — киноварно-красная).

Содержание селена в земной коре около 500 мг/т. Основные черты геохимии селена в земной коре определяются близостью его ионного радиуса к ионному радиусу серы. Селен образует 37 минералов, среди которых в первую очередь должны быть отмечены ашавалит FeSe, клаусталит PbSe, тиманнит HgSe, гуанахуатит Bi2(Se, S)3, хастит CoSe2, платинит PbBi2(S, Se)3, ассоциирующие с различными сульфидами, а иногда также с касситеритом. Изредка встречается самородный селен. Главное промышленное значение на селен имеют сульфидные месторождения. Содержание селена в сульфидах колеблется от 7 до 110 г/т. Концентрация селена в морской воде 4×10−4 мг/л[3].

                                 Получение

Значительные количества селена получают из шлама медно-электролитных производств, в котором селен присутствует в виде селенида серебра. Применяют несколько способов получения: окислительный обжиг с возгонкой SeO2; нагревание шлама с концентрированной серной кислотой, окисление соединений селена до SeO2 с его последующей возгонкой; окислительное спекание с содой, конверсия полученной смеси соединений селена до соединений Se(IV) и их восстановление до элементарного селена действием SO2.

                        Физические свойства

Твёрдый селен имеет несколько аллотропных модификаций. Наиболее устойчивой модификацией является серый селен. Красный селен представляет собой менее устойчивую аморфную модификацию. При нагревании серого селена] он даёт серый же расплав, а при дальнейшем нагревании испаряется с образованием коричневых паров. При резком охлаждении паров селен конденсируется в виде красной аллотропной модификации. Плотность (при н. у.) 4,79 г/см³. Температура плавления 2170. Температура кипения 6850

                                      Химические свойства

Селен — аналог серы и проявляет степени окисления -2 (H2Se), +4 (SeO2) и +6 (H2SeO4). Однако, в отличие от серы, соединения селена в степени окисления +6 - сильнейшие окислители, а соединения селена (-2) - гораздо более сильные восстановители, чем соответствующие соединения серы.

Простое вещество - селен гораздо менее активно химически, чем сера. Так, в отличие от серы, селен не способен гореть на воздухе самостоятельно. При нагревании селен довольно энергично соединяется со многими элементами. Селен на воздухе сгорает голубым пламенем, распространяя характерный запах гнилой редьки. В результате образуется твердый белый SеО2: Sе + О2 = SеО2          Со щелочными металлами селен реагирует (весьма бурно) только будучи расплавленным.

В отличие от SO2, SeO2 — не газ, а кристаллическое вещество, хорошо растворимое в воде. Получить селенистую кислоту (SeO2 + H2O → H2SeO3) ничуть не сложнее, чем сернистую. А действуя на неё сильным окислителем (например, HClO3), получают селеновую кислоту H2SeO4, почти такую же сильную, как серная.

 

                                           ТЕЛЛУР

Теллу́р — химический элемент с атомным номером 52 в периодической системе и атомной массой 127,60; обозначается символом Te (лат. Tellurium), относится к семейству металлоидов.

Содержание в земной коре 1×10−6 % по массе. Известно около 100 минералов теллура. Наиболее часты теллуриды меди, свинца, цинка, серебра и золота. Изоморфная примесь теллура наблюдается во многих сульфидах, однако изоморфизм Te — S выражен хуже, чем в ряду Se — S, и в сульфиды входит ограниченная примесь теллура. Среди минералов теллура особое значение имеют алтаит PbTe, сильванит AgAuTe4, калаверит AuTe2, гессит Ag2Te, креннерит (Au, Ag)Te, петцит Ag3AuTe2, мутманнит (Ag, Au)Te, монбрейит Au2Te3, нагиагит [Pb5Au(Te, Sb)]4S5, тетрадимит Bi2Te2S. Встречаются кислородные соединения теллура, например ТеО2 — теллуровая охра.

                                         Получение

Основной источник — шламы электролитического рафинирования меди и свинца. Шламы подвергают обжигу, теллур остается в огарке, который промывают соляной кислотой. Из полученного солянокислого раствора теллур выделяют, пропуская через него сернистый газ SO2. Для разделения селена и теллура добавляют серную кислоту. При этом выпадает диоксид теллура ТеО2, а H2SeO3 остается в растворе. Из оксида ТеО2 теллур восстанавливают углем.

                           Физико-химические свойства

Теллур — хрупкое серебристо-белое вещество с металлическим блеском. В тонких слоях на просвет красно-коричневый, в парах — золотисто-жёлтый.

Химически теллур менее активен, чем сера. В соединениях проявляет степени окисления -2; +4; + 6, реже +2. Он растворяется в щелочах, поддается действию азотной и серной кислот, но в разбавленной соляной кислоте растворяется слабо. С водой металлический теллур начинает реагировать при 100 °C, а в виде порошка он окисляется на воздухе даже при комнатной температуре, образуя оксид TeO2.

При нагреве на воздухе теллур сгорает, образуя TeO2. Это прочное соединение обладает меньшей летучестью, чем сам теллур. Поэтому для очистки теллура от оксидов их восстанавливают проточным водородом при 500—600 °C.

В расплавленном состоянии теллур довольно инертен, поэтому в качестве контейнерных материалов при его плавке применяют графит и кварц.

Теллур и его летучие соединения токсичны.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.