Хелпикс

Главная

Контакты

Случайная статья





Гипертермия. Виды



 

Ответ острой фазы (ООФ) или реакция острой фазы – это общие неспецифические реакции на повреждение, которые вовлекают в ответ важнейшие защитные и регуляторные системы организма и типовые изменения обмена веществ. Было установлено, что лейкоциты и, прежде всего, моноциты и макрофаги вырабатывают помимо пирогенов многочисленные цитокины, которые и вызывают системные реакции, характеризующие ООФ. Такие цитокины синтезируются не только лейкоцитами, но и другими клетками, отвечающими на повреждение, например, тучными клетками, эндотелиоцитами, фибробластами, клетками некоторых опухолей. Возникающий на повреждение ООФ способствует мобилизации всех защитных сил организма на ограничение действия флогогенного агента, восстановление нарушенного гомеостаза, нормализацию и сохранения здоровья.

Клинические проявления ООФ.
1. Лихорадка.
2. Общая слабость.
3. Сонливость заторможенность.
4. Костно-мышечно-суставные и головные боли.
5. Гипо- и анорексия, диспепсия.
6. Снижение массы тела.
7. Лейкоцитоз, нейтрофилия, ускорение СОЭ.
8. Гиперфибриногенемия, гипергаммаглобулинемия, гипоальбуминемия.

Медиаторы ООФ. Вырабатываются клетками, участвующими в воспалительной реакции, развивающейся в месте первичного повреждения. Такими клетками являются моноциты, макрофаги, гранулоциты, лимфоциты, эндотелиоциты, фибробласты, глиальные клетки, нейроны и другие. Медиаторы ООФ попадают в кровоток и далее взаимодействуют с клетками-мишенями всех органов и тканей через многочисленные специфические рецепторы, локализованные на цитоплазматических мембранах. Медиаторов ООФ много, но к числу наиболее значимых следует отнести ИН-1, ИЛ-6, ФНО-a.

Белки ООФ. ООФ характеризуется увеличением содержания крови белков, которые получили название белков острой фазы. У человека имеется около 30 таких белков, важнейшими из которых являются С-реактивный белок, сывороточный амилоид А, фибриноген, гаптоглобин, церулоплазмин, С3-компонент комплемента, фибронектин, трансферрин, альбумин.

При остро развивающемся повреждении содержание в крови С-реактивного белка и сывороточного амилоида возрастает уже через 6-10 часов и может увеличиваться более чем в 1000 раз. Концентрация других белков ОФ, в частности фибриногена и антиферментов, растет медленнее. Существуют белки, содержание которых в сыворотке во время ООФ снижается. Их стали называть “негативными белками острой фазы”. К ним, в частности, относятся альбумин и трансферрин.

Уровень белков ООФ в крови определяется, прежде всего, синтезом и секрецией их печенью. Важнейшим регулятором этих процессов являются ИЛ-6 и родственные ему цитокины, в меньшей степени – ИЛ-1, ФНО-a, а также глюкокортикоиды.


Биологическая роль белков острой фазы
.

  1. обеспечивают развитие воспаления;
  2. стимулируют фагоцитоз чужеродных начал;
  3. нейтрализуют свободные радикалы;
  4. разрушают потенциально опасные для тканей белки и т.д.

С-реактивный белок принадлежит к числу главных белков врожденной иммунной системы, способных распознавать чужеродные антигены. С-реактивный белок действует как опсонин, поскольку его связь с микроорганизмами облегчает их поглощение фагоцитами. Он активирует комплемент, способствуя лизису бактерий и развитию воспаления. Кроме того, он усиливает цитотоксическое действие макрофагов на клетки опухоли и стимулирует высвобождение ими цитокинов. Содержание С-реактивного белка в сыворотке крови быстро нарастает в самом начале инфекционных и неинфекционных болезней и быстро падает при выздоровлении.

Сывороточный амилоид А подобно С-реактивному белку является элементом врожденной иммунной системы.

Фибриноген – белок свертывающей системы крови. Он создает матрикс для заживления ран, обладает противовоспалительной активностью, препятствует развитию отека.

Церулоплазмин – протектор клеточных мембран, нейтрализующих активность супероксидного и других радикалов, образующихся при воспалении.

Гаптоглобин связывает гемоглобин, а образующийся при этом комплекс действует как пероксидаза – фермент, способствующий окислению различных органических веществ перекисями. Гаптоглобин ограничивает утилизацию кислорода патогенными бактериями.

Антиферменты – сывороточные белки, которые ингибируют протеолитические ферменты, попадающие в кровь из мест воспаления. К ним принадлежит a-антитрипсин, который подавляет действие трипсина, коллагеназы, эластазы, урокиназы, химотрипсина, плазмина, тромбина, ренина, лейкоцитарных протеаз. Недостаточность a1-антитирпсина приводит к разрушению тканей ферментами лейкоцитов в очаге воспаления

Трансферрин – белок, обеспечивающий транспорт железа по крови. При ООФ его содержание в плазме снижается, что приводит к гипосидеремии.

Интерлейкин-1. ИЛ-1 представляет собой многофункциональный цитокин. ИЛ-1 относится к семейству, состоящему из трех структурно родственных пептидов: интерлейкина-1a (ИЛ-1a), интерлейкина-1b (ИЛ-1b) и антагониста рецептора для ИЛ-1. Его продуцируют многие клетки: моноциты, макрофаги, эндотелиоциты, нейтрофилы, В-лимфоциты, натуральные киллеры, фибробласты, дендритные клетки кожи, клетки глии, нейроны. Способностью секретировать ИЛ-1 обладают некоторые опухолевые клетки.

Синтез ИЛ-1 может быть вызван разными факторами: микроорганизмами и продуктами их жизнедеятельности, антигенами немикробного происхождения, органическими и неорганическими соединениями неантигенной природы таким, как соли кремния, желчных кислот, мочевой кислоты, цитокинами (ФНОa, ИЛ-6), активными компонентами комплемента (С), ионизирующим излучением, гипоксией, гипероксией, перегреванием и другими.

Биологические эффекты ИЛ-1. ИЛ-1 опосредует различные защитные процессы в организме, активируемые при его повреждении. Прежде всего, ИЛ-1 является медиатором воспаления, развивающегося на месте повреждения. Когда связанная с повреждением продукция ИЛ-1 возрастает, он вызывает многие системные реакции, что делает его важнейшим медиатором ООФ.

ИЛ-1 стимулирует иммунную систему. Он активирует Т-клетки, и В-клетки.

ИЛ-1 обладает выраженным действием на ЦНС. Наличие в мозге ИЛ-1 вызывает лихорадку, сонливость, анорексию, адинамию, депрессию, изменение функции эндокринной системы.

ИЛ-1 активирует гипоталамо-гипофизарно-надпочечниковую систему. Повышается синтез и выброс гипофизом АКТГ, в результате чего в крови растет содержание кортизола. Усиливается синтез тиреотропного гормона и тироксина. Увеличивается выброс вазопрессина. Одним из важных последствий изменения функций эндокринной системы под влиянием ИЛ-1 является предупреждение избыточной активации иммунной системы.

На стволовые клетки костного мозга ИЛ-1 действует как гемопоэтин, что ведет к тромбоцитозу и нейтрофильному лейкоцитозу со сдвигом лейкоцитарной формулы влево. ИЛ-1 стимулирует секрецию других цитокинов, участвующих в ООФ, прежде всего, ИЛ-6 и ФНОa.

Свое биологическое действие на клетку-мишень ИЛ-1 реализует через рецепторы на цитоплазматической мембране. Имеется две разновидности интерлейкиновых рецепторов. Активация одного из них обеспечивает передачу сигнала внутрь клетки. Уже спустя 10-15 мин после взаимодействия с рецептором в клетке активируются многие протеинкиназы, переносятся в ядро транскрипционные факторы, что позволяет клетке начать транскрипцию генов, индуцируемых ИЛ-1.

Значительная часть эффектов ИЛ-1 реализуется с участие циклооксигеназы, которая катализирует метаболизм арахидоновой кислоты, ведущей к образованию простагландинов.

В организме существует сложная система регуляции потенциально повреждающего действия ИЛ-1. В крови здорового человека и больных людей циркулируют растворимые рецепторы ИЛ-1. Они связывают избыток свободного ИЛ-1.

Другим важным элементом системы регуляции действия ИЛ-1 является естественный антагонист рецептора ИЛ-1 – третий член семейства ИЛ-1. Он синтезируется многими клетками, в том числе и теми клетками, которые продуцируют ИЛ-1, главными источниками синтеза являются гепатоциты. Он специфически связывается с цитоплазматическими рецепторами для ИЛ-1, блокируя тем самым действие самого ИЛ-1 на его клетки мишени. Взаимодействие самого ИЛ-1 с антагонистом рецептора не является сигналом для каких либо внутриклеточных процессов, а его введение в кровь здоровым людям не оказывает заметного влияния на их организм. Вместе с тем, этот антагонист интерлейкинового рецептора эффективно подавляет многие вызываемые ИЛ-1 патологические процессы – лихорадку, гипотензию, синтез белков острой фазы печенью, симптомы септического шока.

Должное соотношение между продукцией ИЛ-1 и антагониста его рецептора во время болезни регулируется определенными цитокинами. Так, ИЛ-6 и ФНОa стимулируют продукцию ИЛ-1, а ИЛ-4, ИЛ-10 и трансформирующий фактор роста-b усиливают секрецию антагонистов ИЛ-1 и одновременно снижают секрецию ИЛ-1.

Интерлейкин-6. ИЛ-6 синтезируется макрофагами, фибробластами, эндотелиоцитами, эпителиальными клетками, моноцитами, Т-клетками, кератоцитами кожи, клетками эндокринных желез, глиальными элементами и нейронами отдельных областей мозга.

Главным стимулятором синтеза ИЛ-6 являются вирусы, бактерии, эндотоксины, липополисахариды, грибы, провоспалительные цитокины ИЛ-1 и ФНОa. ИЛ-1 секретируют также многие линии опухолевых клеток. В отличие от нормальных клеток, опухолевые ткани продуцируют ИЛ-6 постоянно и в отсутствии всякой внешней стимуляции.

Реализация действия ИЛ-6 осуществляется через специфические рецепторы для ИЛ-6, наибольшее количество которых обнаруживается на гепатоцитах, почему до 80% всего вводимого меченого ИЛ-6 фиксируется клетками печени. Рецепторы для ИЛ-6 имеются также на Т-лимфоцитах, В-лимфоцитах, фибробластах, моноцитах и др. Их находят также на мембранах клеток некоторых опухолей.

Биологическая роль ИЛ-6. ИЛ-6 – главный стимулятор синтеза и секреции белков острой фазы гепатоцитами. ИЛ-6 активирует ось «гипоталамус-гипофиз-надпочечники». Подобно ИЛ-1 он опосредует лихорадочный ответ на эндотоксин, стимулирует пролиферацию лейкоцитов в костном мозге.

ИЛ-6 необходим для конечной дифференцировки активированных В-лимфоцитов в плазматические клетки. Он усиливает продукцию иммуноглобулинов зрелыми плазматическими клетками, стимулирует пролиферацию и дифференцировку Т-лимфоцитов, усиливает продукцию ИЛ-2 зрелыми Т-клетками.

ИЛ-6 относится к семейству гемопоэтических цитокинов, он обладает свойствами фактора роста и дифференцировки для стволовых клеток, стимулирует рост гранулоцитов и макрофагов.

Роль ИЛ-6 в болезнях. Хотя первичная роль ИЛ-6 состоит в активации процессов восстановления нарушенного гомеостаза, его избыточная продукция способствует повреждению тканей. ИЛ-6 способствует воспалительному повреждению суставов при ревматоидном артрите. Длительное повышение уровня ИЛ-6 в крови может быть причиной активации остеокластов, разрушающих кость..

ИЛ-6 представляется чувствительным, хотя и неспецифическим маркером болезней. Вызванный повреждением подъем уровня ИЛ-6 в сыворотке происходит очень быстро, примерно через 1,5-4 часа после повреждения. Содержание ИЛ-6 уменьшается параллельно со снижением температуры и затуханием сопутствующего повреждению воспаления. Степень повышения уровня ИЛ-6 в сыворотке зависит от тяжести повреждения. Поэтому определение содержания ИЛ-6 в сыворотке позволяет значительно более точно судить о динамике ответа острой фазы, чем изменения белков острой фазы.

Фактор некроза опухолей. ФНО – третий ключевой гормон ООФ. Синтез ФНОa индуцируется бактериальными токсинами, вирусами, микобактериями, грибами, паразитами, активированными компонентами комплемента, комплексами антиген-антитело, цитокинами (ИЛ-1, ИЛ-6).

Биологическая роль ФНОa.Обладает мощным провоспалительным действием. Он активирует лейкоциты, экспрессирует молекулы адгезии на мембранах эндотелиоцитов, способствуя миграции лейкоцитов из крови в межклеточный матрикс, стимулирует продукцию лейкоцитами активных метаболитов кислорода, секрецию провоспалительных цитокинов клетками воспалительной ткани, включая ИЛ-1, ИЛ-6, ИЛ-8. Во время пролиферации ФНОa способствует размножению фибробластов, стимулирует ангиогенез.

ФНОa действует как иммунорегулятор: усиливает пролиферацию Т-лимфоцитов, пролиферацию и дифференцировку В-лимфоцитов, стимулирует рост натуральных киллеров, усиливает их цитотоксичность. ФНОa является одним из важнейших факторов защиты от внутриклеточных патогенов, обладает противовирусной активностью. Он замедляет рост или вызывает геморрагический некроз опухолей, цитотоксичен для многих линий опухолевых клеток. ФНОa участвует в гемопоэзе, защищает стволовые клетки от сублетальных доз облучения и специфических токсинов клеточного типа.

Роль ФНОa в болезнях. Чрезмерная продукция ФНОa является важнейшим звеном патогенеза септического шока. Содержание ФНОa в сыворотке прямо связано с вероятностью летального исхода при шоке. Блокада образования или предупреждение действия ФНОa на клетки оказывает благоприятное действие у больных септическим шоком. Предполагают участие ФНОa в развитии раковой кахексии и кахексии при хронических инфекционных болезнях. ФНОa может быть ключевым медиатором в реакциях отторжения трансплантата и в болезнях трансплантат против хозяина. Он играет важную роль в повреждении мозга при менингитах, патогенезе ревматоидного артрита и патогенезе других болезней.


Гипертермия. Виды

Гипертермия – типовой патологический процесс, характеризуется повышением температуры тела, уровень которой зависит от окружающей среды. В отличие от лихорадки это очень опасное состояние, т.к. оно сопровождается поломом механизмов терморегуляции.

Гипертермия возникает при таких условиях, когда организм не успевает выделить избыточное количество тепла (нарушается соотношение теплопродукции и теплоотдачи).

Величина теплоотдачи регулируется физиологическими механизмами:

1. Вазомоторная реакция. Сосуды расширяются.

2. Потоотделение.

3. Испарение воды со слизистых оболочек дыхательных путей.


Классификация
(в зависимости от источника образования избытка тепла):

· гипертермия экзогенного происхождения (физическая)

· эндогенная гипертермия (токсическая)

· гипертермия, возникающая в результате перераздражения симпатоадреналовых структур, что ведет к спазму сосудов и резкому уменьшению отдачи тепла при нормальной теплопродукции (т.н. бледная гипертермия).


Экзогенная гипертермия.

Возникает при длительном и значительном повышении температуры окружающей среды, при большом поступлении тепла из окружающей среды (особенно в условиях высокой влажности, что затрудняет потоотделение) – тепловой удар. Это физическая гипертермия при нормальной терморегуляции.

Перегревание тела сопровождается усиленным потоотделением со значительной потерей организмом воды и солей, что ведет к сгущению крови, увеличению ее вязкости, затруднению кровообращение и кислородному голоданию.

Ведущими звеньями патогенеза теплового удара является расстройства водно – электролитного баланса из-за нарушения потоотделения и деятельности гипоталамического центра терморегуляции.

Тепловой удар нередко сопровождается развитием коллапса. Нарушениям кровообращения способствует токсическое действие на миокард избытка в крови калия, освобождающегося из эритроцитов. При тепловом ударе страдают также регуляция дыхания и функция почек, различные виды обмена.

В ЦНС при тепловом ударе отмечают гиперемию и отек оболочек и ткани мозга, множественные кровоизлияния. Как правило, наблюдается полнокровие внутренних органов, мелкоточечные кровоизлияния под плевру, эпикард и перикард, в слизистую оболочку желудка, кишечника, нередко отек легких, дистрофические изменения в миокарде.

Тяжелая форма теплового удара развивается внезапно: изменения сознания от легкой степени до комы, судороги клонического и тонического характера, периодическое психомоторное возбуждение, часто бред, галлюцинации. Дыхание поверхностное, учащенное, неправильное. Пульс до 120- 140/мин малый, нитевидный, тоны сердца глухие. Кожа сухая, горячая или покрывается липким потом.

Температура тела 41-42 градусов и выше. На ЭКГ признаки диффузного поражения миокарда. Наблюдается сгущение крови с нарастанием остаточного азота, мочевины и уменьшения хлоридов. Может быть гибель от паралича дыхания. Летальность до 20-30%.

Патогенетическая терапия – любое простое охлаждение.

Эндогенная (токсическая) гипертермия.
Возникает в результате резкого увеличения образования тепла в организме, когда он не в состоянии выделить этот избыток путем потоотделения и за счет других механизмов.

Причиной является накопление в организме токсинов, под влиянием которых выделяется большое количество макроэргических соединений (АДФ и АТФ), при распаде которых образуется и выделяется большое количества тепла. Если в норме энергия при окислении питательных веществ идет на образование тепла и синтез АТФ, то при токсической гипертермии энергия идет только на образование тепла.

Стадии экзогенной и эндогенной гипертермий:

1. Приспособительная стадия характеризуется тем, что температура тела еще не повышена за счет резкого увеличения теплоотдачи путем:

· усиленного потоотделения

· тахикардии

· расширения сосудов кожи

· учащенного дыхания

У пациента – головная боль, адинамия, тошнота, зрачки расширены. При оказании помощи симптомы гипертермии исчезают.

2. Стадия возбуждения – характеризуется еще большим ощущением жара и увеличением отдачи тепла, но этого недостаточно и температура повышается до 39-40 градусов. Развивается резкая адинамия, интенсивная головная боль с тошнотой и рвотой, оглушенность, неуверенность в движения, периодически кратковременная потеря сознания. Пульс и дыхание учащены, кожа гиперемирована, влажная, потоотделение усилено. При лечении температура тела снижается и функции нормализуются.

3. Параличи дыхательного и вазомоторного центров.

Гипертермия. Патогенетическая терапия

Поскольку жаропонижающие вещества при экзо- и эндогенной гипертермии не помогают, температуру тела снижают только охлаждением тела любым путем: проветривания комнаты, раздевание, грелки со льдом на конечности и печень, холодное полотенце на голову. Очень важно облегчить потоотделение.

Помощь пострадавшему: удалить его из зоны перегревания в место, закрытое от солнца и открытое для ветра, раздеть до пояса, смачивать холодной водой, на голову и шею пузырь со льдом или холодное полотенце.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.