|
|||
Линзы. Призмы. Зеркала. Заключение ⇐ ПредыдущаяСтр 2 из 2 Линзы Линза — деталь из оптически прозрачного однородного материала, ограниченная двумя полированными преломляющими поверхностями вращения, например, сферическими или плоской и сферической. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стекло, оптическое стекло, оптически прозрачные пластмассы и другие материалы. Линзами также называют и другие оптические приборы и явления, которые создают сходный оптический эффект, не обладая указанными внешними характеристиками. В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. Собирающие: К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих — линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например, пузырёк воздуха в воде — двояковыпуклая рассеивающая линза. Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием. Для построения оптических приборов с исправленной оптической аберрацией (прежде всего — хроматической, обусловленной дисперсией света, — ахроматы и апохроматы) важны и иные свойства линз и их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне. Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления. Призмы Призма — оптический элемент из прозрачного материала (например, оптического стекла) в форме геометрического тела — призмы, имеющий плоские полированные грани, через которые входит и выходит свет. Свет в призме преломляется. На сегодняшний день известно большое количество различных призм.
2. Отражательные призмы используют для изменения хода лучей, изменения направления оптической оси, изменения направления линии визирования, для уменьшения габаритных размеров приборов. Классифицируются отражательные призмы по нескольким признакам:
Также, особую нишу среди отражательных призм занимают составные призмы, — состоящие из нескольких частей, разделённых воздушными промежутками. Некоторые широко распространённые призмы получили собственные имена.
3. Поляризационные призмы, с их помощью получают линейно поляризованноеоптическое излучение. Обычно состоят из 2 или более трёхгранных призм, по меньшей мере одна из которых вырезается из оптически анизотропного кристалла. Призма Глана-Тейлора — одна из наиболее часто используемых в настоящее время призм, предназначена для преобразования излучения с произвольной поляризацией в линейно поляризованное. Конструкция была предложена Аркардом и Тейлором в 1948 году. Основные из поляризационных призм:
Зеркала Зеркало — гладкая поверхность, предназначенная для отражения света (или другого излучения). Наиболее известный пример — плоское зеркало. Зеркала широко используются в оптических приборах — спектрофотометрах, спектрометрах в других оптических приборах. Различают несколько видов зеркал:
· Оптическая система телескоп · Основное назначение телескопов — собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа — его объектива. Объективы бывают зеркальными и линзовыми. · Линзы, так или иначе, всегда используются в телескопе. Но в телескопах-рефракторах линзой является главная деталь телескопа – его объектив. Вспомним, что рефракция – это преломление. Линзовый объектив преломляет лучи света, и собирает их в точке, именуемой фокусом объектива. В этой точке строится изображение объекта изучения. Чтобы его рассмотреть используют вторую линзу – окуляр. Она размещается так, чтобы фокусы окуляра и объектива совпадали. Так как зрение у людей разное, то окуляр делают подвижным, чтобы было возможно добиться четкого изображения. Мы это называем настройкой резкости. Все телескопы обладают неприятными особенностями — аберрациями. Аберрации – это искажения, которые получаются при прохождении света через оптическую систему телескопа. Главные аберрации связаны с не идеальностью объектива. Чтобы уменьшить аберрации изготавливают сложные, вовсе не двухлинзовые системы. Дополнительные части вводятся для исправления аберраций объектива. На сегодняшний день первенство среди линзовых телескопов держит телескоп, Йеркской обсерватории с объективом 102 см в диаметре. · Что касается зеркальных объективов, то у простых зеркальных телескопов, телескопов-рефлекторов, объектив — это сферическое зеркало, которое собирает световые лучи и отражает их с помощью дополнительного зеркала в сторону окуляра — линзы, в фокусе которой строится изображение. Рефлекс – это отражение · В зеркальных телескопах так же используются сложные конструкции, поверхности зеркал, отличные от сферических и прочее. Зеркальные телескопы изготавливать легче и дешевле. Именно поэтому их производство в последние десятилетия бурно развивается, в то время как новых крупных линзовых телескопов уже очень давно не делают. Самый большой зеркальный телескоп имеет сложный объектив из нескольких зеркал, эквивалентный целому зеркалу диаметром 11 метров. Самый большой монолитный зеркальный объектив имеет размер чуть больше 8-ми метров. Самым большим оптическим телескопом России является 6-ти метровый зеркальный телескоп БТА (Большой Телескоп Азимутальный). Телескоп долгое время был наикрупнейшим в мире. · Увеличение телескопа. Увеличение телескопа равно отношению фокусных расстояний объектива и окуляра. Если, скажем, фокусное расстояние объектива два метра, а окуляра – 5 см, то увеличение такого телескопа будет 40 крат. Если поменять окуляр, можно изменить и увеличение. Так астрономы и поступают, ведь не менять же, в самом деле, огромный объектив?! · Выходной зрачок. Изображение, которое строит для глаза окуляр, может в общем случае быть как больше глазного зрачка, так и меньше. Если изображение больше, то часть света в глаз не попадет, тем самым, телескоп будет использоваться не на все 100%. Это изображение называют выходным зрачком и рассчитывают по формуле: p=D:W, где p – выходной зрачок, D – диаметр объектива, а W – увеличение телескопа с данным окуляром. Если принять размер глазного зрачка равным 5 мм, то легко рассчитать минимальное увеличение, которое разумно использовать с данным объективом телескопа. Получим этот предел для объектива в 15 см: 30 крат. · Разрешение телескопов · В виду того что, свет – это волна, а волнам свойственно не только преломление, но и дифракция, никакой даже самый совершенный телескоп не дает изображение точечной звезды в виде точки. Идеальное изображение звезды выглядит в виде диска с несколькими концентрическими (с общим центром) кольцами, которые называют дифракционными. Размером дифракционного диска и ограничивается разрешение телескопа. Все, что закрывает собою этот диск, в данный телескоп никак не увидишь. Угловой размер дифракционного диска в секундах дуги для данного телескопа определяется из простого соотношения: r=14/D, где диаметр D объектива измеряется в сантиметрах. Упомянутый чуть выше пятнадцатисантиметровый телескоп имеет предельное разрешение чуть меньше секунды. Из формулы следует, что разрешение телескопа всецело зависит от диаметра его объектива. Вот еще одна причина строительства как можно более грандиозных телескопов. · Относительное отверстие. Отношение диаметра объектива к его фокусному расстоянию называется относительным отверстием. Этот параметр определяет светосилу телескопа, т. е., грубо говоря, его способность отображать объекты яркими. Объективы с относительным отверстием 1:2 – 1:6 называют светосильными. Их используют для фотографирования слабых по яркости объектов, таких, как туманности. · Искусственный глаз телескопа · Одной из самых ненадежных деталей телескопа всегда был глаз наблюдателя. У каждого человека — свой глаз, со своими особенностями. Один глаз видит больше, другой — меньше. Каждый глаз по-разному видит цвета. Глаз человека и его память не способны сохранить всю картину предлагаемую для созерцания телескопом. Поэтому, как только стало возможным, астрономы стали заменять глаз приборами. Если подсоединить вместо окуляра фотоаппарат, то изображение, получаемое объективом можно запечатлеть на фотопластинке или фотопленке. Фотопластинка способна накапливать световое излучение, и в этом ее неоспоримое и важное преимущество перед человеческим глазом. Фотографии с большой выдержкой способны отобразить несравненно больше, чем под силу рассмотреть человеку в тот же самый телескоп. Ну и конечно, фотография останется как документ, к которому неоднократно можно будет в последствии обратиться. Еще более современным средством являются ПЗС — камеры с полярно-зарядовой связью. Это светочувствительные микросхемы, которые подменяют собой фотопластинку и передают накапливаемую информацию на ЭВМ, после чего могут делать новый снимок. Спектры звезд и других объектов исследуются с помощью присоединенных к телескопу спектрографов и спектрометров. Ни один глаз не способен так четко различать цвета и измерять расстояния между линиями в спектре, как это с легкостью делают названные приборы, которые еще и сохранят изображение спектра и его характеристики для последующих исследований. Наконец, ни один человек не сможет посмотреть одним глазом в два телескопа одновременно. Современные системы из двух и более телескопов, объединенных одной ЭВМ и разнесенных, порой на расстояния в десятки метров, позволяют добиться потрясающе высоких разрешений. Такие системы называют интерферометрами.
Заключение В настоящее время ни один оптический прибор не обходится без базовых элементов, таких как: линза, призма, зеркало, светофильтр. Все даже самые сложные приборы содержат эти элементарные составляющие, какова бы не была концепция прибора. Наш современный мир не мыслится без оптических приборов, потому как самые невероятные открытия человечества, как раз таки сделаны при помощи них.
Список используемой литературы: Афанасьев В.А. Оптические измерения (1981) Андреев, Гаврилов Оптические измерения
|
|||
|