|
|||
Тема занятия: Решение задач на вращательное движение твердого тела.Тема занятия: Решение задач на вращательное движение твердого тела. Пример 1.Маятник OM качается в вертикальной плоскости так, что φ=0,5sin2t. Длина OM=l=1м. (рис. 1). Определить величину полного ускорения точки
Рис.1
Решение. Маятник вращается вокруг горизонтальной оси О, перпендикулярной вертикальной плоскости. Угловая скорость угловое ускорение Например, при t=1 с, φ=0,5sin2=0,45 рад≅26°; ω=cos2=-0,42 c-1 (вращение по часовой стрелке); ε=-2sin2=-1,82 c-2 (угловое ускорение направлено также по часовой стрелке). Вращение в этом положении ускоренное. Скорость точки M: vM=lω=1∙0,42=0,42 м∙с-1 (определяется модуль скорости). Направлен вектор скорости соответственно направлению угловой скорости – в сторону вращения. Нормальное ускорение an=lω2=1∙0,422=0,176 м∙с-2, касательное ускорение aτ=lε=1∙1,82=1,82 м∙с-2. (Определён опять модуль вектора ускорения. Направлен вектор вниз, как указывает угловое ускорение). Величина полного ускорения точки
Вращение тела вокруг неподвижной точки
Пример 2. Водило OA=a, вращаясь вокруг вертикальной оси z с угловой скоростью ω0, заставляет диск радиуса R кататься по горизонтальной плоскости (рис.2). Рис.2
Если представить диск как основание конуса с вершиной в неподвижной точке O, то движение диска можно назвать вращением вокруг этой неподвижной точки O. Так как скорость точки касания диска с плоскостью равна нулю, то мгновенная ось вращения P проходит через эту точку. И вектор мгновенной угловой скорости будет направлен по этой оси. Точка A вместе с водилом OA вращается вокруг оси z. Поэтому её скорость vA=aω0 (рис.20). Эта скорость определяет направление вращения диска вокруг оси P и направление вектора . Величина угловой скорости (h – расстояние от A до оси P). Теперь можно найти скорость любой точки диска, рассматривая его движение как вращение вокруг оси P. Так, например, скорость точки B: vB=2h∙ω. Так как h=R∙cosα и , , то и vB=2aω0.
4) Ускорение точек тела. Сначала определим угловое ускорение тела . При движении тела вектор угловой скорости изменяется и по величине, и по направлению. Точка, расположенная на его конце будет двигаться по некоторой траектории со скоростью (рис.21). Рис.21
Если рассматривать вектор как радиус-вектор этой точки, то . Итак. Угловое ускорение тела можно определить как скорость точки, расположенной на конце вектора угловой скорости: . Этот результат называется теоремой Резаля. Теперь обратимся к определению ускорения точек. Ускорение какой-либо точки M тела есть сумма двух векторов. Первый вектор . Модуль его a1=εr∙sinα1=ε∙h1, где h1 – расстояние от точки M до вектора . Направлен он перпендикулярно и . Но таким же способом определяется касательное ускорение. Поэтому первую составляющую ускорения определяют как касательное ускорение, предполагая, что тело вращается вокруг оси, совпадающей с вектором . И обозначается этот вектор ускорения так . Второй вектор Модуль его a2=ωv∙cosα2, но α2=90°, т.к. векторы и перпендикулярны друг другу. Рис.3
Значит a2=ωv=ωh2ω=h2ω2, где h2 – расстояние от точки М до мгновенной оси P, до вектора . Направлен вектор перпендикулярно и , т.е. так же как вектор нормального ускорения при вращении вокруг оси P, или вектора . Поэтому этот вектор ускорения и обозначают, соответственно, так: Итак, ускорение точек тела, вращающегося вокруг неподвижной точки, определяется как сумма двух ускорений: Этот результат называется теоремой Ривальса.
Пример 3. Продолжим исследование движения диска (пример 2). Модуль угловой скорости Значит вектор вместе с осью P, которая всегда проходит через точку касания диска с плоскостью, вращается вокруг оси z и описывает конус. Точка М на конце вектора движется по окружности радиуса r=ω∙cosα с угловой скоростью ω0. Поэтому угловое ускорение диска Откладывается вектор из неподвижной точкиО. Направлен он, как скорость , перпендикулярно водилу OA, параллельно оси х (рис. 4). Рис.4
Найдём ускорение точки В. Ускорение . Направлен вектор перпендикулярно OB и расположен в плоскости zO1y. Ускорение Вектор направлен по BC, перпендикулярно мгновенной оси P. Модуль вектора найдём с помощью проекций на оси x, y, z: Значит
Пример 4. Колесо, вращаясь равноускоренно, достигло угловой скорости 20 рад/с через 10 оборотов после начала вращения. Найти угловое ускорение колеса. Дано: ω=20 рад/с , N=10 об. Найти: ε-? Решение. При равномерном вращательном движении имеют место следующие два уравнения: φ=φо+ωоt+εt2/2 и ω= ωо+εt. По условию ωо=0, тогда эти уравнения примут вид: φ=εt2/2 и ω = εt. Решая их и учитывая, что φ=2πN, получим окончательно ε=ω2/4πN=3,2 рад/с. Пример 5. Колесо радиусом 10 см вращается с постоянным угловым ускорением 3,14 рад/с2 (рис.5). Найти для точек на ободе колеса к концу первой секунды после начала движения: 1) угловую скорость, 2) линейную скорость, 3) тангенциальное ускорение, 4) нормальное ускорение, 5) полное ускорение и 6) угол, составляемый направлением полного ускорения с радиусом колеса. Дано: R= 0,1 м, ε=3,14 рад/с2 Найти: ω-? v -? aτ -? a -? Рис.5
Решение. 1) При равнопеременном вращательном движении угловая скорость ω = ωо+εt. По условию ωо=0, тогда ω = εt, т.е. ω растет пропорционально времени. К концу первой секунды ω=3,14 рад/с. 2) Так как v=ωR, то линейная скорость также пропорционально времени. К концу первой секунды v = 3,14 м/с. 3) Тангенциальное ускорение aτ=𝜀R не зависит от времени t. В нашем случае aτ=0,314 м/с2. 4) Нормальное ускорение an=ω2R=ε2t2R, т.е. нормальное ускорение растет пропорционально квадрату времени: при t=1 c an=0,986м/с2. 5) Полное ускорение растет со временем по закону: При t=1 c a=1,03 м/с2. 6) Имеем , где α - угол, составляемый направлением полного ускорения с радиусом колеса. В начальный момент времени, т.е. при t=0, a =aτ - полное ускорение направлено по касательной. При t=∞ a = an (так как aτ=const и an пропорционально времени), т.е. при t=∞ полное ускорение направлено по нормали. К концу первой секунды sinα=aτ/an=0,314/1,03=0,305, т.е. α=17о46’.
Пример 6. Материальная точка движется по окружности радиуса R так, что зависимость угла поворота от времени задана уравнением φ=αt3. Найти полное ускорение точки как функцию времени. Решение. Решим задачу двумя способами. 1 способ. Выпишем формулы соответствующие данному способу. Выполним указанные в формулах математические действия. 2 способ. Выпишем формулы соответствующие данному способу. Выполним указанные в формулах математические действия.
Домашнее задание: 1. Записать примеры 1,2,4,5 в тетрадь 2. Остальные примеры разобрать 3. Решите задачи: Задача 1 Вал начинает вращаться с постоянным ускорением с состояния покоя. За первые 5 секунд вал делает N = 12,5 оборота. Определить угловую скорость вала в конце промежутка времени. Ответ: Задача 2 Колесо радиусом R = 0, 2 м начинает вращаться с состояния покоя с постоянным ускорением. Через t = 10 c от начала движения точка, лежащая на ободе колеса, имеет линейную скорость V = 10 м/с. Определить скорость, нормальное и касательное ускорение точек обода колеса в момент времени от начала движения. Ответ:
Критерии оценки: «5» - выписаны примеры и решены 2 задачи «4» - выписаны примеры, в задачах есть незначительные ошибки; «3» - выписаны примеры, задачи не решены
|
|||
|