Хелпикс

Главная

Контакты

Случайная статья





Название дисциплины: «ОП.05 Основы гидравлики и теплотехники»



 1. Название дисциплины: «ОП.05 Основы гидравлики и теплотехники»

2. Номер группы: ЭРСО 20-1

3. Форма и дата занятия: комбинированное, 10.11.2021

4. ФИО преподавателя: Гумерова Сабарчан Шамсулеймановна  soja1984renat@mail.ru,вк: 89526782142, https://vk.com/public194376261

5. Срок выполнения (сдачи) задания:11.11.2021г

ТемаТепломассообмен

Тема урока «Теплообменные аппараты. Принципы их работы.» 2ч

             Задание.

1.Прочитать материал по теме. Составить краткий конспект, ответить на вопросы

Теоретический материал

Рисунок 1 – Теплообменный аппарат

Теплообменные аппараты и установки предназначены для передачи теплоты от одной среды к другой или от среды к нагреваемому (охлаждаемому) телу. Теплообменные аппараты и установки по некоторым характерным признакам можно объединить в определенные классификационные группы.

Прежде всего, по способу передачи теплоты от одной среды к другой (от одного теплоносителя к другому) теплообменники классифицируются на:

· рекуперативные;

· регенеративные;

· смесительные;

· с электрическим обогревом.

В рекуперативных теплообменниках передача теплоты осуществляется сквозь разделяющую теплоносители однослойную или многослойную стенку при установившемся или неустановившемся тепловом режиме. К аппаратам с установившимся тепловым режимом относятся непрерывно действующие теплообменники, работающие при неизменных во времени расходах и параметрах теплоносителей на входе и выходе из аппарата. Передача теплоты от одной среды к другой в рекуперативных аппаратах происходит при одновременном вынужденном движении сред без изменения фазового состояния или при фазовом переходе одного (обоих) теплоносителя.

 

 

Рисунок 2 - Рекуперативный теплообменник

В периодически действующих аппаратах в течение заданного времени может осуществляться последовательно нагрев, испарение, охлаждение определенного количества предварительно загруженной жидкости или нагрев, охлаждение сыпучих и твердых материалов. В процессе нагрева или охлаждения, естественно, происходит изменение во времени температуры нагреваемого вещества. В качестве греющей среды используются теплоносители, не изменяющие фазовое состояние (жидкости, газы), и конденсирующийся водяной пар или пар другой жидкости. Греющая (охлаждающая) среда, как правило, подается непрерывно с мало изменяющимися параметрами на входе и существенно переменной во времени температурой на выходе из аппарата, особенно у жидких и газообразных теплоносителей. Следовательно, аппараты такого типа относятся к теплообменникам с неустановившимся тепловым режимом.

В особые подгруппы можно выделить оросительные теплообменники и рекуперативные системы с потоками газовзвеси. В первой подгруппе передача теплоты сквозь стенку сопровождается процессами тепломассообмена на внешней орошаемой поверхности. Во второй в качестве одного из теплоносителей используется дисперсная среда со сравнительно небольшой объемной концентрацией твердых частиц, которые изменяют условия переноса тепла от этой системы к поверхности теплообмена и способствуют интенсификации теплообмена.

Непрерывно действующие рекуперативные теплообменники в большинстве случаев можно отнести к категории аппаратов, работающих с установившимся тепловым режимом.

По конструктивному оформлению теплообменники непрерывного действия могут быть:

· змеевиковыми;

· секционными;

· кожухотрубчатыми;

· ребристыми;

· пластинчатыми;

· пластинчато-ребристыми;

· прокатно-сварными;

· сотовыми.

В регенеративных теплообменных аппаратах при передаче теплоты от одной среды к другой также используется поверхность теплообмена. Однако эта поверхность, или точнее насадка, образующая поверхность теплообмена, является промежуточным аккумулятором теплоты. Вначале, в течение какого-то отрезка времени, насадка через свою поверхность воспринимает определенное количество теплоты от греющей среды. Затем производится переключение потоков теплоносителей и по поверхности насадки пропускается нагреваемая среда. В этот период насадка охлаждается, передавая ранее воспринятую теплоту нагреваемой среде.

 

 

Рисунок 3 - Регенеративный теплообменник

 

Нагрев или охлаждение в регенераторах, особенно с неподвижной насадкой, относится к категории нестационарных, но синхронно повторяющихся тепловых процессов. Обычно в регенераторах нагреваются компоненты горения топлива для промышленных печей, МГД генераторов и парогенераторов.

Для теплообмена при смешении рабочих сред не требуется специальная поверхность.

Теплообмен в этом случае происходит на границе раздела фаз одного рода теплоносителей (однородных) или на границе раздела жидкой и газообразной сред и сопровождается массообменом, изменением энтальпии смеси или каждого из теплоносителей, изменением влагосодержания газообразной среды. Смесительные теплообменники могут быть полыми и с насадкой. Поверхность насадки во втором случае служит только для организации движения пленки жидкой фазы и не является поверхностью теплообмена.

В соответствии с назначением газожидкостные аппараты называются скрубберами, градирнями, оросительными камерами, смесительными подогревателями воды.

· в полом и насадочном скрубберах происходят охлаждение, осушка или увлажнение и очистка от пыли и других примесей всевозможных газов и воздуха;

· в оросительных камерах – охлаждение, осушка и увлажнение воздуха для систем кондиционирования;

· в градирнях – охлаждение охлаждающей воды из конденсаторов паровых турбин;

· в смесительных паро- и водо-водяных аппаратах – нагревание воды для систем горячего водоснабжения, конденсация отработавшего пара и так далее.

В теплообменных аппаратах с электрическим обогревом в качестве источника тепла используется электрическая энергия. Условия передачи теплоты от источника тепла к нагреваемой среде или нагреваемому телу в них отличаются от условий теплопередачи в теплообменниках с двумя или более теплоносителями.

 

Рисунок 4 - Спиральный теплообменник

 

Электрическая энергия превращается в тепловую в элементах сопротивления, в электродуговых установках прямого или косвенного нагрева, в установках индукционного и диэлектрического нагрева. Наибольшее распространение в промышленной теплотехнике получили электрические нагреватели сопротивления и индукционные нагреватели.

Каждая рассматриваемая группа теплообменников, кроме аппаратов с электрическим обогревом, классифицируется на подгруппы по роду теплоносителей:

· парожидкостные;

· жидкостно-жидкостные;

· газожидкостные;

· газо-газовые;

· парогазовые;

· с дисперсными теплоносителями.

Поверхность теплообмена может быть выполнена из гладких или оребренных разным способом труб, из гладких или профильных волнистых и оребренных пластин или в виде разнообразной по форме фасонной, блочной и кирпичной насадки. По компоновке поверхности теплообмена и соединению ее с корпусом гладкотрубчатые аппараты можно разделить на следующие группы:

· погруженные с прямыми трубами и змеевиковые;

· оросительные с водяным и воздушным охлаждением;

· секционные;

· кожухотрубчатые.

Секционные и кожухотрубчатые аппараты могут быть скомпонованы также и из ребристых труб.

Кожухотрубчатые и секционные теплообменники изготавливают в виде жесткой (то есть обе трубчатые решетки соединяются жестко с корпусом) и нежесткой конструкции: с U- и W-образными трубами, с «плавающей» камерой и с компенсаторами на корпусе или трубах.

Возможные варианты конструкций труб, применяемых в трубчатых теплообменниках, представлены на (рисунке 5).

 

 

   Рисунок 5 – Трубы для теплообменников: а – с поперечными ребрами: 1 – ретандер; 2– игольчатые; 3 – плоскосплошные; 4 – прямоугольные; 5 – с накатным оребрением; 6 –круглые; 7, 8 – треугольные; 9 – спиральные; 10 – проволочные; б – с продольными ребрами: 11 – прямоугольные; 12 – V-образные; 13 – выдавленные; в – цилиндрические со вставками: 14 – с диафрагмой; 15 – кольцевые; 16 – дисковые; 17 – спиральные; 18 – гладкотрубные цилиндрические; г – пережатые; 19 – полукольцевыми вмятинами; 20 – кольцевыми вмятинами; 21 – спиральными вмятинами; д – нецилиндрические: 22 – овалообразные; 23 – каплеобразные; 24 – двуугольные; 25 – овальные; 26 – обтекаемые; 27, 28 – плавниковые

 

Аппараты из пластин разделяются на: рубашечные, спиральные, гладкопластинчатые разного профиля, пластинчатые ребристые и сотовые. Они могут быть разборными, полуразборными, сварными и прокатно-сварными.

Поверхность теплообмена пластинчатых аппаратов компонуется из разнообразных по конструктивным признакам стальных листов. К числу таких теплообменников относятся реакторы с рубашкой, спиральные конденсаторы и нагреватели для жидкостей, плоскопластинчатые нагреватели низкого давления для воздуха, воздухо- и газонагреватели из различных штампованных, ребристых и других профилей листов в системах газотурбинных и холодильных установок, компактные пакетные и сотовые теплообменники, применяемые на железнодорожном и других видах транспорта.

 

 

Рисунок 6 – Пластинчатый теплообменник

 

Конструкции пластин, применяемых при компоновке теплообменников подобного типа, представлены на (рисунке 7).

 

Рисунок 7 – Пластины для теплообменников: а – с ребрами: 1 – гладкими квадратными; 2 – гладкими прямоугольными; 3 – с другими формами гладких ребер; 4 – волнистыми; 5 – стерженьковыми; 6 – разрезными жалюзийными; 7 – разрезными пластинчатыми; б – пластинчатые: 8 – плоские; 9 – спиральные; в – с повышенной турбулентностью: 10 – со сфероидальными зигзагообразными каналами; 11, 12 – волнообразными и серповидными каналами

Аппараты с насадкой чаще всего бывают разборными. Насадка укладывается или насыпается на специальную решетку. Для высокотемпературных регенераторов фасонная огнеупорная насадка устанавливается на фундамент или на решетку из огнеупорного материала.

Теплообменные аппараты выполняют из огнеупорных материалов, графита, стекла, пластмасс. По конструктивным признакам они могут быть весьма разнообразными в зависимости от технологических условий нагрева или охлаждения, а также физико-химических свойств и температурного уровня рабочих сред.

По пространственному расположению теплообменные аппараты делятся на вертикальные, горизонтальные, наклонные; по числу ходов рабочих сред – на одно, двух, четырехходовые и т. д.; по взаимному направлению движения теплоносителей – на прямоточные, противоточные, прямоточно-противоточные и с разными вариантами перекрестного тока.

Рисунок 8 - Пластинчато-ребристый теплообменник

 

Рисунок 9 - Кожухотрубный теплообменник

Вопросы:

Ответить на контрольные вопросы

 

1. Что такое тепловой процесс? Что является движущей силой тепловых процессов?

2. Назовите способы и виды тепловых процессов?

3. Перечислите нагревающие охлаждающие агенты и их температуры.

4. Виды электронагрева. Их характеристика?

5. Какие факторы учитывают при выборе теплоносителя для нагрева среды?

6. Какой теплообменник целесообразно выбрать для передвижных и транспортных тепловых установок, авиационных двигателей и криогенных систем, где при высокой эффективности процесса необходимы компактность и малая масса?

7. Для чего применяются конденсаторы смешения?

 

Литература

     

  1. Брюханов, О. Н. Основы гидравлики, теплотехники и аэродинамики: учебник / О.Н. Брюханов, В.И. Коробко, А.Т. Мелик-Аракелян. — Москва : ИНФРА-М, 2020. — 254 с. — (Среднее профессиональное образование). - ISBN 978-5-16-102480-5.. - URL: https://znanium.com/catalog/product/104693 3- Текст : электронный
  2. https://infourok.ru/klassifikaciya-teploobmennih-apparatov-konspekt-lekcii-2882008.html

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.