Хелпикс

Главная

Контакты

Случайная статья





Принцип действия



 

На самом деле электричество очень популярный источник энергии. Посудите сами: его легко транспортировать, оно легко переводится в другие виды энергии – тепловую, механическую. По этой причине электричество так популярно, ученые придумывают все новые способы применения электричества (например, электромобиль), а также применение новым качествам электричества (например, сверхпроводимость).

Вам наверняка приходилось слышать выражение: «Если отключить воду, газ и электричество, то человек снова станет первобытным»? Это совершенно истинное утверждение. Про воду и газ мы говорить не будем, так как это тема для других книг, а вот без электричества действительно нельзя обойтись.

Во-первых, освещенность наших квартир напрямую зависит от электричества. Лампы накаливания, дневного света, галогенные лампы, без них нам приходилось бы пользоваться хозяйственными свечами или лучинами. Когда отключается во всем доме электричество, растерянные жильцы, как правило, не говорят: «Отключили электричество», говорят – «Отключили свет». Задумайтесь, почему?

Во-вторых, на электричестве работает большинство бытовых приборов, которыми мы пользуемся каждый день, начиная с дверного звонка и заканчивая холодильными установками. Когда отключают электричество, пусть даже и на короткий промежуток времени, то после того, как все успеют зажечь хозяйственные свечи, начинают возмущаться по поводу того, что размораживается холодильник. В такой ситуации уж совсем нелепо вспоминать про пылесос или утюг.

В-третьих, отсутствие электричества явно скажется на нашем культурном уровне: телевизор, видеомагнитофон, магнитофон, видеокамера, радио, компьютер, наконец – все это средства общения с окружающим миром и при отсутствии электрического тока они становятся просто корпусами со множеством никуда не годных микросхем.

Ла́мпа нака́ливания — искусственный источник света, в котором свет испускает тело накала, нагреваемое электрическим током до высокой температуры. В качестве тела накала чаще всего используется спираль из тугоплавкого металла (чаще всего — вольфрама), либо угольная нить. Чтобы исключить окисление тела накала при контакте с воздухом, его помещают в вакуумированную колбу, либо колбу, заполненную инертными газами или парами галогенов.

Принцип действия

В лампе накаливания используется эффект нагревания проводника, обычно проволочного (тела накаливания), при протекании через него электрического тока (тепловое действие тока). Температура тела накаливания повышается после замыкания электрической цепи. Все тела, температура которых превышает температуру абсолютного нуля излучают электромагнитное тепловое излучение в соответствии с законом Планка. Спектральная плотность мощности излучения (Функция Планка) имеет максимум, длина волны которого на шкале длин волн зависит от температуры. Положение максимума в спектре излучения сдвигается с повышением температуры в сторону меньших длин волн (закон смещения Вина). Для получения видимого излучения необходимо, чтобы температура излучающего тела превышала 570 °C (температура начала красного свечения, видимого человеческим глазом в темноте). Для зрения человека, оптимальный, физиологически самый удобный, спектральный состав видимого света отвечает излучению абсолютно чёрного тела с температурой поверхности фотосферы Солнца 5770 K. Однако неизвестны твердые вещества, способные без разрушения выдержать температуру фотосферы Солнца, поэтому рабочие температуры нитей ламп накаливания лежат в пределах 2000—2800 °C. В телах накаливания современных ламп накаливания применяется тугоплавкий и относительно недорогой вольфрам (температура плавления 3410 °C), рений (температура плавления примерно та же, но выше прочность при пороговых температурах) и очень редко осмий (температура плавления 3045 °C). Поэтому спектр ламп накаливания смещён в красную часть спектра. Только малая доля электромагнитного излучения лежит в области видимого света, основная доля приходится на инфракрасное излучение. Чем меньше температура тела накаливания, тем меньшая доля энергии, подводимой к нагреваемой проволоке, преобразуется в полезное видимое излучение, и тем более «красным» кажется излучение.

Для оценки физиологического качества светильников используется понятие цветовой температуры. При типичных для ламп накаливания температурах 2200—2900 K излучается желтоватый свет, отличный от дневного. В вечернее время «тёплый» (< 3500 K) свет более комфортен для человека и меньше подавляет естественную выработку мелатонина[1], важного для регуляции суточных циклов организма, и нарушение его синтеза негативно сказывается на здоровье.

В атмосферном воздухе при высоких температурах вольфрам быстро окисляется в триоксид вольфрама (образуя характерный белый налёт на внутренней поверхности лампы при потере ею герметичности). По этой причине, вольфрамовое тело накала помещают в герметичную колбу, из которой, в процессе изготовления лампы откачивается воздух и заполняется инертным газом — обычно аргоном. На заре индустрии ламп их изготавливали с вакууммированными колбами; в настоящее время только лампы малой мощности (для ламп общего назначения — до 25 Вт) изготавливают в вакуумированной колбе. Колбы более мощных ламп наполняют инертным газом (азотом, аргоном или криптоном). Повышенное давление в колбе газонаполненных ламп уменьшает скорость испарения вольфрамовой нити. Это не только увеличивает срок службы лампы, но и позволяет повысить температуру тела накаливания. Таким образом, световой КПД повышается, а спектр излучения приближается к белому. Внутренняя поверхность колбы газонаполненной лампы медленнее темнеет при распылении материала тела накала в процессе работы, как у вакуумированной лампы.

Все чистые металлы и их многие сплавы (в частности, вольфрам) имеют положительный температурный коэффициент сопротивления, что означает увеличение электрического удельного сопротивления с ростом температуры. Эта особенность автоматически стабилизирует электрическую потребляемую мощность лампы на ограниченном уровне при подключении к источнику напряжения (источнику с низким выходным сопротивлением), что позволяет подключать лампы непосредственно к электрическим распределительным сетям без использования ограничивающих ток балластных реактивных или активных двухполюсников, что экономически выгодно отличает их от газоразрядных люминесцентных ламп. Для нити накаливания осветительной лампы типично сопротивление в холодном состоянии в 10 раз меньше, чем в нагретом до рабочих температур.

Электри́ческий предохрани́тель — компонент электрических и радиоэлектронных устройств, предназначенный для защиты оборудования и приборов от повреждений при их неисправностях или для защиты питающей сети от аварийных электрических токов, возникающих при авариях и отказах, неправильного включения, ошибок монтажа.

Предохранитель включается последовательно с потребителем электрического тока и разрывает цепь тока при превышении им номинального тока, — тока, на который рассчитан предохранитель.

По принципу действия при разрыве тока в защищаемой цепи предохранители разделяются на четыре класса — плавкие, электромеханические, электронные и использующие нелинейные обратимые свойства по изменению сопротивления после воздействия экстратока у некоторых проводящих полупроводниковых материалов (самовосстанавливающиеся предохранители).

В плавких предохранителях при превышении тока свыше номинального происходит разрушение токопроводящего элемента предохранителя (расплавление, испарение), традиционно этот процесс называют «перегоранием» или «сгоранием» предохранителя.

Автоматический выключатель защиты сети снабжён датчиками протекающего тока (электромагнитными и/или тепловыми), при превышении тока сверх номинального, разрывают цепь размыканием контактов, обычно, движение контактов на размыкание производится посредством предварительно взведённой пружины.

В электронных предохранителях защищаемую цепь разрывают бесконтактные ключи.

В самовосстанавливающихся предохранителях, при превышении тока, на несколько порядков увеличивается удельное электрическое сопротивление полупроводникового материала токопроводящего элемента предохранителя, что снижает ток цепи, после снятии тока и их охлаждения восстанавливают своё сопротивление.

Под термином электрический предохранитель или, обычно, предохранитель, подразумевается наиболее часто используемый и дешёвый плавкий предохранитель.

Предохранители повсеместно используются для защиты любого электрооборудования, например, для исключения перегрева проводов бытовой электрической сети в случае коротких замыканий. Отсутствие предохранителей или неграмотное их применение может привести к пожару[1].

Электронагревательный прибор — устройство, в котором энергия электрического тока превращается в тепловую энергию.

Электрический нагрев по сравнению с другими видами нагрева (с использованием газа, жидкого или твердого топлива) имеет ряд существенных преимуществ. Он значительно улучшает санитарно-гигиенические условия жилых помещений. Газ значительно уступает электрическому нагреву в санитарно-гигиеническом отношении. При открытом горении газа выделяются как продукты полного его сгорания (углекислый газ, вода), так и продукты неполного сгорания, вредно действующие на здоровье людей (окись углерода, формальдегид, смолистые вещества и др.). При электронагреве таких вредных выделений нет. По сравнению с газовыми электроприборы взрывобезопасны.

В электронагревательных приборах электрическая энергия преобразуется в тепловую. В бытовых приборах используют различные виды электронагрева: за счет использования проводников высокого сопротивления, инфракрасный, индукционный и высокочастотный.

Нагрев за счет проводников высокого сопротивления подчиняется закону Джоуля-Ленца. При этом могут использоваться электронагревательные элементы открытого, защищенного и закрытого типов. В открытых электронагревателях электронагревательный элемент изоляции не имеет; в защищенных — проводник имеет изоляцию (керамические бусы, слюда и т. п.); в нагревателях закрытого типа проводник, в котором выделяется тепло, полностью защищен от внешней среды и является несменным. К нагревателям последнего типа относят трубчатые электронагреватели (ТЭНы), нагреватели, вмонтированные в ситалловые панели. Для изготовления нагревательных элементов используют либо нихромы (Х20Н30; Х15Н60 — данный вид сплавов более дорогой, термостойкий и долговечный), либо фехрали (Х13Ю4 — они дешевле, выдерживают нагрев до температуры 800°С.

Приборы с инфракрасным нагревом работают на проводниках высокого сопротивления, максимум излучения которых приходится на область спектра с длиной волн от 0,76 до 3 мкм (инфракрасная зона). Используют данный вид нагрева в грилях, электрокаминах.

Индукционный нагрев основан на излучении джоулевого тепла и вихревых токов, возникающих в обмотках трансформатора броневого типа. Эти нагреватели имеют температуру до 500°С, они дорогие, но обеспечивают высокую безопасность. Данный вид нагрева применяется в приборах, осуществляющих нагрев воды (кипятильники; ранее применялся в стиральных машинах — электробезопасный способ нагрева).

Высокочастотный (микроволновой) нагрев используют в приборах для тепловой обработки пищевых продуктов. Принцип работы высокочастотных нагревателей сводится к следующему: магнетрон (высокочастотный генератор) излучает высокочастотные электромагнитные волны (2300-2700 МГц), которые через волнопровод попадают в рабочую камеру, где происходит облучение продукта. При этом происходит поляризация молекул вещества, в результате чего внутри массы продукта выделяется тепловая энергия.

Электронагрев проводников высокого сопротивления наиболее распространен, его используют в преобладающем большинстве электронагревательных приборов. Этот вид электронагрева основан на выделении тепла при прохождении электрического тока через проводники высокого сопротивления по закону Джоуля—Ленца.

В качестве материалов для нагревательных сопротивлений применяют хромоникелевые сплавы, в меньшей степени — железо-хромоалюминиевые сплавы. Для изготовления низкотемпературных нагревателей (до 100 °С) применяют константан, графит, сажу, электропроводящее стекло, двуокись олова и др.

Основной частью электронагревательного прибора является электронагреватель (электронагревательный элемент). Его изготовляют в виде проволочной спирали или ленты из никелина, нихрома, фехраля. Эти материалы выдерживают рабочую температуру накала до 1 000 °С. Нагревательные элементы на теплостойких (преимущественно керамических) изоляторах. По конструкции нагревательные элементы подразделяют на открытые и закрытые спиральные, пластинчатые.

Электронагреватель состоит из нагревательного сопротивления (чаще всего в виде проволочной спирали), электроизоляции и каркаса, или оболочки. Иногда роль каркаса выполняет электроизоляция.

Инфракрасным нагревом обладают все электронагреватели сопротивления. Под инфракрасными нагревателями понимают такие, у которых максимум излучения приходится на инфракрасную область спектра. Инфракрасные электронагреватели подразделяют на «светлые», излучающие помимо инфракрасных видимые лучи, и «темные», излучающие преимущественно инфракрасные лучи.

К «светлым» излучателям относятся лампы накаливания типа ИКЗ (инфракрасная зеркальная) с внутренней зеркальной поверхностью для получения направленного лучевого потока, кварцевая лампа с йодным заполнением (лампа накаливания инфракрасная кварцевая — НИК).

К «темным» излучателям инфракрасных волн относят открытые спирали и трубчатые электронагреватели (ТЭНы) с температурой на поверхности 700... 750 °С.

При использовании приборов с инфракрасным нагревом для выпечки и жаренья повышается качество кулинарной обработки (хорошо поджаривается поверхность изделий).

Все большее использование для приготовления пищи находит высокочастотный нагрев.

Особенностью высокочастотного нагрева является использование диэлектрических свойств пищевых продуктов. Посуда, окружающий воздух и аппарат остаются холодными. При высокочастотном нагреве температура поверхностных слоев продукта ниже, чем внутренних. На поверхности не образуется специфической корочки, характерной для инфракрасного нагрева. Продукт приобретает вкус печеных изделий.

К основным достоинствам высокочастотного нагрева относится быстрота приготовления пищи. По сравнению с поверхностным нагревом продолжительность приготовления разных блюд сокращается в 4... 10 рази может составлять всего несколько минут. При этом пища не теряет своей пищевой ценности, исключается ее подгорание, облегчается мойка посуды. Печи, работающие на излучении сверхвысоких частот (СВЧ), не излучают тепло в окружающее пространство.

Классификация нагревательных электроприборов. По виду регулирования нагревательные приборы подразделяют на четыре группы: без регулирования; с регулированием температуры нагрева; с регулированием мощности; автоматические с программным управлением.

Для регулирования температуры в приборах устанавливают термоограничители или терморегуляторы. Термоограничителем называется устройство, ограничивающее температуру нагрева электроприбора путем автоматического размыкания цепи электропитания. Терморегуляторы позволяют автоматически поддерживать в определенных пределах предварительно заданную температуру.

Регулирование мощности прибора может быть ступенчатое и бесступенчатое (плавное). Ступенчатое регулирование осуществляется с помощью пакетного переключателя; электронагреватель в этом случае имеет несколько ступеней мощности. При бесступенчатом регулировании мощности электронагреватель работает циклично (включен — выключен).

Бытовые электронагревательные приборы по назначению можно подразделить на следующие группы: приборы для приготовления и подогрева пищи, приборы для глаженья, отопительные, приборы для нагрева воды, нагревательный инструмент, сушильные и приборы для обогрева тела человека.

Приборы для приготовления и подогрева пищи подразделяют на подгруппы: для приготовления и подогрева пищи общего назначения, для жаренья, тушения и выпечки, для варки пищи и приготовления напитков.

К приборам для приготовления и подогрева пищи общего назначения относят напольные электроплиты, переносные плитки, СВЧ-печи, мармиты, подогреватели детского питания.

Рабочей частью плит и переносных электроплиток являются конфорки, которые могут быть двух типов исполнения: закрытого и защищенного. В выпускаемых плитках устанавливают чугунные конфорки со спиралью, запрессованной вместе с изоляцией в канавки чугунного диска снизу; со спиралью в керамических бусах, прикрытой сверху чугунным диском (плитки высокой теплоемкости); со спиралью, уложенной в канавки керамического основания и прикрытой сверху стальным листом; со спиралью, уложенной вместе с изоляцией в стальной кольцеобразный корпус (штампованная конфорка), и конфорки из ТЭНов.

Переносные плитки могут быть одно- и двухконфорочными. Стандартные диаметры конфорок — 145 и 180 мм.

Основными параметрами конфорок являются их размеры, мощность, температура нагрева, КПД, а показателями эксплуатационных свойств — продолжительность разогрева до рабочего состояния, расход электроэнергии, продолжительность приготовления пищи, гарантийная наработка на отказ.

Использование посуды с утолщенным термораспределительным дном при эксплуатации плиток с чугунными конфорками способствует экономии электроэнергии, снижению эксплуатационных расходов, уменьшению затрат времени на приготовление пищи. При черном матовом дне посуды КПД увеличивается на 12... 15 % по сравнению с дном блестящим или покрытым стеклоэмалью.

Расход электроэнергии меньше, если диаметр посуды больше диаметра конфорки примерно на 20 мм. При ином соотношении диаметров посуды и конфорки расход электроэнергии на приготовление одного и того же блюда увеличивается.

Электроплиты подразделяют по виду конфорок; виду регулирования; числу конфорок; наличию жарочного шкафа. Электроплиты бывают напольными и настольными.

Приборы для жаренья, тушения и выпечки. В ассортимент изделий этой подгруппы входят грили, ростеры, тостеры.

Грили представляют собой жарочные шкафы с инфракрасным нагревом. Инфракрасный излучатель (ТЭН или вольфрамовая спираль в трубке из кварцевого стекла) размещают под сводом. Через боковые стенки шкафа пропускают приспособления для крепления приготовляемых продуктов — вертела для птицы и сосисок, шампура для шашлыков, сетки для котлет и т. п. Привод вращающихся приспособлений может быть пружинный или электрический.

Лучшие модели грилей имеют регуляторы нагрева, передние застекленные дверцы, лампочки подсвечивания, контактные часы для регулирования времени жаренья, верхнюю откидную стенку, под которой размещают поддон для разогрева пищи.

Ростеры служат для подогрева и поджаривания ломтиков хлеба, но в них нагревательный элемент закрыт и поэтому нагрев осуществляется более равномерно.

Тостеры служат для поджаривания ломтиков хлеба, в некоторых можно поджаривать сандвичи. Различают тостеры с ручным управлением, полуавтоматические, автоматические.

В тостерах с ручным управлением ломтики хлеба помещают в ниши и извлекают из них вручную. Продолжительность поджаривания устанавливает потребитель. Поджаривание может быть как с одной, так и с двух сторон.

В полуавтоматических тостерах закладывают и вынимают хлеб вручную, но время обжаривания контролируется термоограничителем или реле времени.

У автоматических тостеров автоматизируется не только время поджаривания, но и выемка поджаренных ломтиков за счет установки пружинных толкателей.

Приборы для варки пищи и приготовления напитков. В эту подгруппу приборов входят кофеварки, кофейники, самовары, чайники и т.п.

Кофеварки предназначены для приготовления кофе под давлением. Состоят из двух сосудов, в одном из них кипятится вода, в другом — собирается готовый кофе. Процесс приготовления кофе заключается в прохождении горячей воды под давлением через кофе из первой емкости во вторую. Кофеварка снабжена плотно закрывающейся крышкой.

Кофейники отличаются от чайников формой (высота больше диаметра) и наличием гейзера для заварки кофе. Нагревательный элемент размещают в двойном дне.

Самовары имеют традиционную русскую форму. Изготовляют их из латуни с покрытиями.

Чайники имеют латунные, алюминиевые или пластиковые корпуса цилиндрической или полушаровидной формы. В большинстве выпускаемых чайников нагреватель трубчатый, расположен внутри чайника. Некоторые чайники изготовляют с нагревателями пластинчатого типа в двойном дне. Для лучшей теплопередачи нагреватель прижимают к внутреннему дну с помощью металлического диска и винта. Такие чайники имеют ножки из теплоизоляционного материала.

По назначению электронагревательные приборы подразделяются на следующие подгруппы:

• приборы для приготовления и подогрева пищевых продуктов;

• приборы для нагрева воды;

• приборы для обогрева помещений;

• приборы для глажения;

• приборы для обогрева тела человека;

• электронагревательный инструмент.

Кроме этого, электронагревательные приборы можно различать по способу нагрева; степени электробезопасности; степени защиты от воздействия влаги; климатическим условиям эксплуатации; по возможности регулировки температуры и другим признакам.

Наиболее представительной подгруппой электронагревательных приборов является первая — приборы для приготовления и подогрева пищевых продуктов. В ней выделяют приборы для приготовления пищи общего назначения: электроплиты и электроплитки (электроплиты отличаются наличием жарочного шкафа); конфорочные панели и жарочные шкафы; приборы специального назначения: СВЧ-печи, тостеры (используют для обжаривания ломтиков хлеба, имеют вертикальную загрузку), ростеры (применяют для получения горячих бутербродов — имеют горизонтальную загрузку); фритюрницы (для приготовления пищи во фритюре — кипящем жиру); электрошашлычницы; блинницы; вафельницы; электросковороды и электрокастрюли; приборы для приготовления напитков: чайники, кофейники, самовары; приборы для подогрева пищи и напитков: мармиты (плоские нагревательные панели); подогреватели детского питания (принцип работы основан на водяной бане).

Ассортимент электронагревательных приборов разнообразен, каждому виду присущи свои признаки классификации, которые обычно предусмотрены в действующих стандартах.

В быту используют электронагрев проводников высокого сопротивления, инфракрасный нагрев, высокочастотный.

Электронагрев проводников высокого сопротивления наиболее распространен, его используют в преобладающем большинстве нагревательных электроприборов. Этот вид электронагрева основан на выделении тепла при прохождении электрического тока через проводники высокого сопротивления по закону Джоуля—Ленца.

Материалы для нагревательных сопротивлений применяют хромоникелевые сплавы (нихромы марок Х20Н80 и Х15Н60), в меньшей — железо-хромоалюминиевые сплавы (фехраль Х13Ю4). Для изготовления низкотемпературных нагревателей (до 100°С) применяют константан, графит, сажу, электропроводящее стекло, диоксид олова и др.

Основной частью нагревательного электроприбора сопротивления является электронагреватель (электронагревательный элемент) Электронагреватель состоит из нагревательного сопротивления, электроизоляции и каркаса, или оболочки. Иногда роль каркасе выполняет электроизоляция.

В каждом данном приборе тепло от электронагревателя нагреваемому телу может передаваться за счет теплопроводности конвекции, лучеиспускания, т. е. всех трех существующих способом или, преимущественно, одним либо двумя способами.

Инфракрасным нагревом обладают все электронагреватели сопротивления. В практике под инфракрасными нагревателями понимают такие, у которых максимум излучения приходится на инфракрасную область спектра с длинами волн от 0,76 до 3 мкм. Инфракрасные электронагреватели подразделяют на «светлые»

излучающие, помимо инфракрасных, видимые лучи, и «темные», излучающие преимущественно инфракрасные лучи. К «светлым» излучателям относят лампы накаливания типа ИКЗ (инфракрасная зеркальная) с внутренней зеркальной поверхностью для получения направленного лучевого потока (мощность ламп 250 и 500 Вт, Тц равна 2300 ± 100 К), кварцевая лампа с йодным заполнением НИК-1000—220 тр (лампа накаливания, инфракрасная, кварцевая, 1000 Вт, 220 В, трубчатая. Вольфрамовая спираль в ней натянута по всей трубке; Тц ее составляет 2550 К).

К «темным» излучателям инфракрасных волн относят открытые спирали и ТЭНы с температурой на поверхности 700-750° С.

При использовании приборов с инфракрасным нагревом для выпечки и жаренья повышается качество кулинарной обработки (хорошо поджаривается поверхность изделий).

Высокочастотный нагрев, находит все большее использование для приготовления и подогрева пищи.

Особенностью высокочастотного нагрева является использование диэлектрических свойств пищевых продуктов. Посуда, окружающий воздух и аппарат остаются холодными. При высокочастотном нагреве температура поверхностных слоев продукта ниже, чем внутренних. На поверхности не образуется специфической корочки, характерной для инфракрасного нагрева. Продукт приобретает вкус печеных изделий.

Основным преимуществом высокочастотного нагрева является быстрота приготовления пищи. По сравнению с поверхностным нагревом время приготовления продуктов сокращается в 4—10 раз и составляет всего несколько минут. При этом пища не теряет своей пищевой ценности, исключается ее подгорание, облегчается мойка посуды. Печи СВЧ (рис.) не излучают тепло в окружающее помещение.

Классификация нагревательных электроприборов. По виду регулировки нагревательные приборы подразделяют на четыре группы: без регулировки; с регулировкой температуры нагрева; с регулировкой мощности; автоматические с программным управлением.

Для регулировки температуры в приборах устанавливают термоограничители или терморегуляторы. Термоограничителем называется устройство, ограничивающее температуру нагрева электроприбора путем автоматического размыкания цепи электропитания. Терморегуляторы позволяют автоматически поддерживать в определенных пределах предварительно заданную температуру.

Регулировка мощности прибора может быть ступенчатой и бесступенчатой(плавной). Ступенчатая регулировка осуществляется с помощью пакетного переключателя; электронагреватель в этом случае имеет несколько ступеней мощности. При бесступенчатой регулировке мощности электронагреватель работает циклично (включен-выключен). Период включения (ПВ) может изменяться в широких пределах в зависимости от необходимого количества подводимой энергии.

Бытовые электронагревательные приборы по назначению можно подразделить на следующие группы: приборы для приготовления и подогрева пищи, приборы для глаженья, отопительные, приборы для нагрева воды, нагревательный инструмент, сушильные и приборы для обогрева тела человека.

Приборы для приготовления и подогрева пищи. Их можно разделить на четыре подгруппы: для приготовления и подогрева пищи общего назначения, для жаренья, тушения и выпечки, для варки пищи, для приготовления напитков.

К приборам для приготовления и подогрева пищи общего назначения относят напольные электроплиты, переносные плитки, мармиты, подогреватели детского питания. Наиболее распространенными являются электроплитки.

Рабочей частью плит и переносных электроплиток являются конфорки, которые могут быть двух типов исполнения: закрытого и защищенного. В выпускаемых плитках устанавливают чугунные конфорки со спиралью, запрессованной вместе с изоляцией в канавки чугунного диска снизу; со спиралью в керамических бусах, прикрытой сверху чугунным диском (плитки высокой теплоемкости); со спиралью, уложенной в канавки керамического основания и прикрытой сверху стальным листом; со спиралью, уложенной вместе с изоляцией в стальной кольцеобразный корпус (штампованная конфорка), и конфорки из ТЭНов.

Большинство электроплит и плиток, выпускаемых за рубежом, имеют два типа конфорок: чугунные облегченные (европейские страны) и ТЭНы (США).

Основными параметрами конфорок являются их размеры, мощность, температура нагрева, к.п.д., а показателями эксплуатационных свойств — время разогрева до рабочего состояния, расход электроэнергии, время приготовления пищи, гарантийная наработка на отказ.

Использование посуды с утолщенным термораспределителным дном при эксплуатации плиток с чугунными конфорками способствует экономии электроэнергии, снижению эксплуатационных расходов, уменьшению затрат времени на приготовление пищи. При черном матовом дне посуды к.п.д. увеличивается на 12—15% по сравнению с дном блестящим или покрытым стеклоэмалью.

Расход электроэнергии меньше, если диаметр посуды больше диаметра конфорки примерно на 20 мм. При ином соотношении диаметров посуды и конфорки расход электроэнергии на приготовление одного и того же блюда увеличивается.

Электроплиты подразделяют по виду конфорок (чугунные - Ч, из трубчатых электронагревателей - Т); виду регулировки (ступенчатая — С, бесступенчатая — Б, комбинированная — Р, с элементами автоматики — А); числу конфорок (2; 3; 4); наличию жарочного шкафа (Ш). Условное обозначение плит включает все названные признаки. Электроплиты бывают напольными и настольными.

Переносные плитки могут быть одно- и двухконфорочными. Стандартные диаметры конфорок 145 и 180 мм. Номинальная мощность конфорок диаметром 145 мм составляет 600, 800, 1000 Вт, а диаметром 180 мм — 800 (только штампованные конфорки), 1200, 1500 и 1800 Вт.

Приборы для жаренья, тушения и выпечки. В ассортимент изделий этой подгруппы входят грили, тостеры, сковороды.

Грили представляют собой жарочные шкафы с инфракрасным нагревом. Инфракрасный излучатель (ТЭН или вольфрамовая спираль в трубке из кварцевого стекла) размещает под сводом. Через боковые стенки шкафа пропускают приспособления для крепления приготовляемых продуктов: вертела для птицы и сосисок, шампуры для шашлыков, сетки для котлет и т. п. Привод вращающихся приспособлений может быть пружинный или электрический. Скорость вращения 3—4 об./мин.

Лучшие модели грилей имеют регуляторы нагрева, передние застекленные дверцы, лампочки подсвечивания, контактные часы для регулирования времени жаренья, верхнюю откидную стенку, под которой размещают поддон для разогрева пищи. Мощность грилей 1,3—1,5 кВт.

Тостеры (рис.) служат для поджаривания ломтиков хлеба, в некоторых можно поджаривать сандвичи. Различают тостеры с ручным управлением, полуавтоматические, автоматические.

Рис. Тостер фирмы PHILIPS HD 4585

В тостерах с ручным управлением ломтики хлеба помещают в ниши и извлекают из них вручную. Время поджаривания устанавливает потребитель. Поджаривание может быть как с одной, так и с двух сторон.

В полуавтоматических тостерах закладывают и вынимают хлеб вручную, но время обжаривания контролируется термоограничителем или реле времени.

У автоматических тостеров автоматизируется не только время поджаривания, но и выемка поджаренных ломтиков за счет установки пружинных толкателей.

Тостеры различают и по числу одновременно закладываемых ломтиков хлеба (1; 2; 3; 4).

В качестве электронагревателей в тостерах чаще всего используют открытые спирали. Потребляемая мощность тостеров 700-1200 Вт, время поджаривания хлеба не более 2-3 мин.

Приборы для варки пищи и приготовления напитков. В подгруппу приборов для варки пищи и приготовления напитков входят чайники, кофейники, кофеварки, самовары и т.п.

Чайники имеют латунные, алюминиевые или пластиковые корпуса цилиндрической или полушаровидной формы. В большинстве выпускаемых чайников нагреватель трубчатый, расположен внутри чайника. Некоторые чайники изготавливают с нагревателями пластинчатого типа в двойном дне. Для лучшей теплопередачи нагреватель прижимают к внутреннему дну с помощью металлического диска и винта. Такие чайники имеют ножки из теплоизоляционного материала.

В настоящее время широкое распространение получили чайники из поликарбоната .

Стандартная емкость чайников 1; 1,6; 1,8; 2 и 2,5 л.

Кофейники отличаются от чайников формой и наличием гейзера для заварки кофе. Нагревательный элемент размещают в двойном дне. Емкость кофейников не превышает 1,5 л.

Кофеварки предназначены для приготовления кофе под давлением. Состоят из двух сосудов, в одном из них кипятится вода, в другом - собирается готовый кофе. Процесс приготовления кофе заключается в прохождении горячей воды под давлением через кофе из первой емкости во вторую. Кофеварка снабжена плотно закрывающейся крышкой.

Самовары имеют традиционную русскую форму. Изготавливают их из латуни с покрытиями. Выпускают самовары емкостью 2; 2,5; 3 и 4 л, мощность электронагревателя патронного типа или ТЭНа соответственно 0,8; 1; 1,25 и 1,6 кВт.

Приборы для глаженья. Глаженье текстильных изделий, основано на способности нитей, волокон получать высокоэластические деформации под воздействием тепла, влаги и давления. Временный эффект глаженья объясняется тем, что высокоэластические деформации являются обратимыми, поскольку с течением времени текстильные волокна, нити возвращаются к первоначальным размерам, форме, т. е. происходит процесс релаксации.

К приборам для глаженья относят электроутюги и гладильные машины.

Электрические утюги. Ассортимент выпускаемых утюгов характеризуется значительным разнообразием конструкций и технических показателей (мощность, масса, размеры и т.п.). Вследствие этого они имеют разные потребительные свойства. Промышленность выпускает следующие типы утюгов:

— с терморегулятором и стальной либо алюминиевой подошвой;

— с терморегулятором и пароувлажнителем тканей, алюминиевой подошвой ;

 

Утюги с терморегулятором — при глаженье тканей на подошве поддерживаются оптимальные температуры. Расход электроэнергии зависит от съема тепла с подошвы. При отсутствии нагрузки средняя потребляемая мощность утюгов с терморегулятором не превышает 135 Вт, при глаженье разных по волокну и влажности тканей колеблется в пределах 500-850 Вт.

Такие утюги при нормальной работе терморегулятора безопасны в пожарном отношении, так как максимальная температура на подошве не превышает 260 °С. Для обеспечения быстрого разогрева в них устанавливают нагреватели большой мощности.

Более совершенными являются утюги с терморегулятором и пароувлажнителем. Они бывают двух типов: капельного и бойлерного.

У утюгов капельного типа под крышкой или снаружи размещен бачок для воды. В дне бачка имеется отверстие, в которое входит коническая игла штока управления. При подъеме иглы вода каплями стекает в камеру парообразования, а из нее пар выходит через отверстия в подошве утюга, увлажняя ткань. Такие утюги следует заполнять дистиллированной или кипяченой водой. При использовании жесткой воды в коническом отверстии образуется накипь, перекрывающая его.

В утюгах бойлерного типа вода испаряется непосредственно в бачке, нагреваясь от утюга или от самостоятельного электронагревателя. В таких утюгах допускается использование жесткой воды, но в них нельзя приостановить парообразование.

Гладильные машины. Основное преимущество таких машин по сравнению с электроутюгами состоит в том, что при работе на них не требуется приложение усилий на их перемещение, глаженье производят сидя. Таким образом, значительно снижа



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.