|
||||||||||||||
Применение векторов к решению задачПрименение векторов к решению задач Цели: на конкретных примерах показать применение векторов при решении геометрических задач; развивать логическое мышление учащихся, учить решать задачи. Ход урока I. Анализ результатов самостоятельной работы. 1. Указать ошибки учащихся при выполнении работ. 2. Решить задачи, вызвавшие затруднения у учащихся. II. Повторение изученного материала. 1. Ответить на вопросы на с. 213–214. 2. Вспомнить основные правила действий с векторами. 3. Решить задачи на доске и в тетрадях: 1) Упростите выражение 2) Найдите вектор из условия 4. Записать в тетрадях таблицу перевода с «геометрического» языка на «векторный»:
III. Работа по учебнику. 1. Векторы могут использоваться для решения геометрических задач. Рассмотрим вспомогательную задачу. 2. Разобрать решение задачи 1 на с. 208 учебника по рис. 264. IV. Решение задач. 1. Решить задачу 2. Точки M и N – середины сторон AB и CD четырехугольника ABCD. Докажите, что Решение Пусть О – произвольная точка. Согласно задаче 1 из п. 84 имеем поэтому . Примечание. Результат задачи 2 можно использовать при доказательстве теоремы о средней линии трапеции на следующем уроке. 2. Решить задачу 3. Точка С лежит на отрезке AB, причем АС : СВ = Решение По условию AC : CB = 2 : 3, поэтому Но Следовательно, откуда получается Примечание. Задача 3 является частным случаем более общей задачи 806. 3. Решить задачу № 784 на доске и в тетрадях. 4. Решить задачу № 786 на доске и в тетрадях. Решение Так как точка А1 – середина стороны ВС, то . Далее 5. При наличии времени решить задачу 4.
Решение Пусть О – произвольная точка. Согласно задаче 1 из п. 84 . Аналогично, . Из этих равенств следует, что Отсюда следует, что PQ || AE и PQ = AE. V. Итоги урока. Домашнее задание: повторить материал пунктов 76–84; разобрать решения задачи 2 из п. 84 и задачи № 788 и записать в тетрадь; решить задачу № 785.
|
||||||||||||||
|