Хелпикс

Главная

Контакты

Случайная статья





ДИФРАКЦИЯ СВЕТА



 

ПРИРОДА СВЕТА


Оптика – раздел физики, изучающий световые явления.
Что такое свет?
Взгляды ученых на природу света с течением времени изменялись.

С 18 века в физике шла борьба между приверженцами волновой теории и корпускулярной теории.

Известный ученый И.Ньютон считал: свет - это поток корпускул (частиц), выбрасываемых светящимся телом, которые распространяются в пространстве прямолинейно. Это предположение подтверждалось законом прямолинейного распространения света.

Английский ученый Р.Гук читал: свет – это механические волны. Подтверждением этой теории были работы Х. Гюйгенса, Т. Юнга, О. Френеля и др.
По современным представлениям свет имеет двойственную природу ( корпускулярно-волновой дуализм):
- свет обладает волновыми свойствами и представляет собой электромагнитные волны, но одновременно является и потоком частиц – фотонов. В зависимости от светового диапазона проявляются в большей мере те или иные свойства.

ИЗМЕРЕНИЕ СКОРОСТИ СВЕТА
Астрономический метод

В 1676году впервые осуществил измерение света датский физик О. Ремер.
Ремер наблюдал затмение спутника Юпитера Ио.

Ио – спутник Юпитера
I – спутник находился в тени Юпитера 4ч. 28 мин.
II – спутник вышел из тени на 22 мин.

Измерения проводились дважды: при наименьшем удалении Юпитера от Земли и через 6 месяцев, когда расстояние между Землей и Юпитером становилось наибольшим.

Полученное различие в продолжительности времени затмения объяснялось тем, что свет, распространяясь с конечной скоростью должен был пройти дополнительное расстояние, равное диаметру орбиты Земли.

Из-за плохой точности измерений Ремер получил лишь очень приблизительное значение скорости света 215 000 км/с.

Лабораторный метод

В 1849г. - французский физик Физо.


С помощью зеркала А свет от источника S направлялся на зубчатое колесо К, которое вращалось. Пройдя сквозь колесо свет достигал плоского зеркала З. После отражения снова падал на колесо и мог или пройти сквозь него, или нет (в зависимости от угла поворота колеса).

Скорость света определялась формулой:

где Z – число зубцов на вращающемся колесе
L= 8,6 км – расстояние между колесом и зеркалом
w (омега) – наименьшая угловая скорость вращения колеса, при которой свет не попадает к наблюдателю.

Физо получил скорость света - 313 000км/с.

Скорость света в вакууме

По современным измерениям скорость света в вакууме равна:

Приблизительно при решении задач для вычислений берут обычно величину c = 300 000 км/с.

ИНТЕРФЕРЕНЦИЯ СВЕТА


Интерференция волн – это явление наложения когерентных волн
- свойственно волнам любой природы (механическим, электромагнитным и т.д.
Когерентные волны - это волны, испускаемые источниками, имеющими одинаковую частоту и постоянную разность фаз.
При наложении когерентных волн в какой-либо точке пространства амплитуда колебаний (смещения ) этой точки будет зависеть от разности расстояний от источников до рассматриваемой точки. Эта разность расстояний называется разностью хода.
При наложении когерентных волн возможны два предельных случая:
Условие максимума:


Разность хода волн равна целому числу длин волн ( иначе четному числу длин полуволн).

где

В этом случае волны в рассматриваемой точке приходят с одинаковыми фазами и усиливают друг друга – амплитуда колебаний этой точки максимальна и равна удвоенной амплитуде.

Условие минимума:

Разность хода волн равна нечетному числу длин полуволн.

где

Волны приходят в рассматриваемую точку в противофазе и гасят друг друга.
Амплитуда колебаний данной точки равна нулю.

В результате наложения когерентных волн (интерференции волн) образуется интерференционная картина.

- интерференционная картина наложения когерентных механических волн на воде

При интерференции волн амплитуда колебаний каждой точки не меняется во времени и остается постоянной.

При наложении некогерентных волн нет интерференционной картины, т.к. амплитуда колебаний каждой точки меняется со временем.

1802г. Английский физик Томас Юнг поставил опыт, в котором наблюдалась интерференция света.
Опыт Томаса Юнга

От одного источника через щель А формировались два пучка света ( через щели В и С), далее пучки света падали на экран Э. Так как воны от щелей В и С были когерентными, на экране можно было наблюдать интерференционную картину: чередование светлых и темных полос.

Светлые полосы – волны усиливали друг друга (соблюдалось условие максимума).
Темные полосы – волны складывались в противофазе и гасили друг друга (условие минимума).
Если в опыте Юнга использовался источник монохроматического света (одной длины волны), то на экране наблюдались только светлые и темные полосы данного цвета.
Если источник давал белый свет (т.е. сложный по своему составу), то на экране в области светлых полос наблюдались радужные полосы. Радужность объяснялась тем, что условия максимумов и минимумов зависят от длин волн.

При проведении своего опыта Юнгу впервые удалось измерить длину световой волны.

В результате опыта Юнг доказал, что свет обладает волновыми свойствами.

Применение интерференции:
- интерферометры – приборы для измерения длины световой волны
- просветление оптики ( в оптических приборах при прохождении света через объектив потери света составляют до 50%) – все стеклянные детали покрывают тонкой пленкой с показателем преломления чуть меньше, чем у стекла; перераспределяются интерференционные максимумы и минимумы и потери света уменьшаются.

Интерференция в тонких пленках
Явление интерференции можно наблюдать, например:
- радужные разводы на поверхности жидкости при разливе нефти, керосина, в мыльных пузырях;
Толщина пленки должна быть больше длины световой волны.

При попадании монохроматического света (самый простой случай) на тонкую пленку часть света отражается от наружной поверхности пленки, другая часть света, пройдя через пленку, отражается от внутренней поверхности.
При попадании в глаз на сетчатке происходит наложение (сложение) двух когерентных волн и возникает интерференционная (полосатая) картина, как результат усиления и ослабления волн. В случае белого света интерференционная картина будет радужной.

ДИФРАКЦИЯ СВЕТА


Дифракция- это явление, присущее волновым процессам для любого рода волн,  наблюдение дифракции волн на водной поверхности при прохождении волн через узкую щель (с краю видны закругления плоских волн).

Дифракция света– это отклонение световых лучей от прямолинейного распространения при прохождении сквозь узкие щели, малые отверстия или при огибании малых препятствий.

Явление дифракции света доказывает, что свет обладает волновыми свойствами.

Для наблюдения дифракции можно:

- пропустить свет от источника через очень малое отверстие или расположить экран на большом расстоянии от отверстия. Тогда на экране наблюдается сложная картина из светлых и темных концентрических колец.
- или направить свет на тонкую проволоку, тогда на экране будут наблюдаться светлые и темные полосы, а в случае белого света – радужная полоса.

- наблюдение дифракции света на малом отверстии.


Принцип Гюйгенса – Френеля: каждая точка среды, до которой дошло возмущение, сама становится источником вторичных волн.

Все вторичные источники, расположенные на поверхности фронта волны, когерентны между собой.
Амплитуда и фаза волны в любой точке пространства – это результат интерференции волн, излучаемых вторичными источниками.

Принцип Гюйгенса-Френеля дает объяснение явлению дифракции:

1. вторичные волны, исходя из точек одного и того же волнового фронта (волновой фронт – это множество точек, до которых дошло колебание в данный момент времени) , когерентны, т.к. все точки фронта колеблются с одной и той же частотой и в одной и той же фазе;
2. вторичные волны, являясь когерентными, интерферируют.

Явление дифракции накладывает ограничения на применение законов геометрической оптики:
Закон прямолинейного распространения света, законы отражения и преломления света выполняются достаточно точно только , если размеры препятствий много больше длины световой волны.

Дифракция накладывает предел на разрешающую способность оптических приборов:

- в микроскопе при наблюдении очень мелких предметов изображение получается размытым
- в телескопе при наблюдении звезд вместо изображения точки получаем систему светлых и темных полос.

Дифракционная решетка
- это оптический прибор для измерения длины световой волны.

Дифракционная решетка представляет собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками.

Если на решетку падает монохроматическая волна ,, то щели (вторичные источники) создают когерентные волны. За решеткой ставится собирающая линза, далее – экран. В результате интерференции света от различных щелей решетки на экране наблюдается система максимумов и минимумов.


Разность хода между волнами от краев соседних щелей равна длине отрезка АС. Если на этом отрезке укладыается целое число длин волн, то волны от всех щелей будут усиливать друг друга. При использовании белого света все максимумы (кроме центрального) имеют радужную окраску.

Формула дифракционной решетки:

где k – порядок (или номер) дифракционного спектра

Чем больше штрихов нанесено на решетке, тем дальше друг от друга находятся дифракционные спектры и тем меньше ширина каждой линии на экране, поэтому максимумы видны в виде раздельных линий, т.е. разрешающая сила решетки увеличивается.

Точность измерения длины волны тем больше, чем больше штрихов приходится на единицу длины решетки.

Дифракция в глазе


А ЗНАЕТЕ ЛИ ВЫ?


Датский астроном Оле Рёмер знаменит тем, что впервые измерил скорость света, однако не только за это соотечественники говорят ему «спасибо». Именно благодаря Рёмеру в Копенгагене впервые в Европе появилось уличное освещение, ведь до этого горожанам приходилось носить с собой громоздкие фонари.
___

Интересно, что алмаз является не только рекордсменом по твердости и отражению света, но он может еще и снизить скорость света почти на половину - до 124 000

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.