|
|||
Введение ПРЕДМЕТ ФИЛОСОФИИ НАУКИ 22 страницаКстати, в науке часто так бывает, что ученый, который делает открытие, не может дать ему верное истолкование. Введенные Планком дополнительные предположения, так называемые ad hoc гипотезы, которые предназначались для спасения старой картины мира, в конечном счете не решали проблему. Более того, они просто переводили парадокс на иной уровень, поскольку введение в состав теории все новых ad hoc гипотез приводит к противоречиям с фундаментальным идеалом теоретического объяснения, который требует объяснения возрастающего многообразия явлений, исходя из как можно меньшего числа постулатов. Если безгранично увеличивать количество объясняющих постулатов, то в пределе может возникнуть ситуация, когда для каждого нового факта будет вводиться новый принцип, что эквивалентно разрушению самой идеи теоретического объяснения. Разрешил парадоксы теории А. Эйнштейн, предложив изменить представления научной картины мира о структуре электромагнитного поля, используя идею корпускулярно-волнового дуализма. Интересно, что Эйнштейн проделал работу в этой области примерно в то же время, когда создавал специальную теорию относительности. Обе эти теории были связаны с радикальной ломкой сложившейся научной картины мира, и само покушение на принципы научной картины мира было подготовлено предшествующим развитием науки и культуры. Пересмотр картины мира и идеалов познания всегда начинается с критического осмысления их природы. Если ранее они воспринимались как выражение самого существа исследуемой реальности и процедур научного познания, то теперь осознается их относительный, преходящий характер. Такое осознание предполагает постановку вопросов об отношении картины мира к исследуемой реальности и понимании историчности идеалов познания. Постановка таких вопросов означает, что исследователь из сферы специально научных проблем выходит в сферу философской проблематики. Философский анализ является необходимым моментом критики старых оснований научного поиска. Но кроме этой, критической функции, философия выполняет конструктивную функцию, помогая выработать новые основания исследования. Ни картина мира, ни идеалы объяснения, обоснования и организации знаний не могут быть получены чисто индуктивным путем из нового эмпирического материала. Сам этот материал организуется и объясняется в соответствии с некоторыми способами его видения, а эти способы задают картина мира и идеалы познания. Новый эмпирический материал может обнаружить лишь несоответствие старого видения новой реальности, но сам по себе не указывает, как нужно перестроить это видение. Перестройка картины мира и идеалов познания требует особых идей, которые позволяют перегруппировать элементы старых представлений о реальности и процедурах ее познания, элиминировать часть из них, включить новые элементы с тем, чтобы разрешить имеющиеся парадоксы и ассимилировать накопленные факты. Такие идеи формируются в сфере философского анализа познавательных ситуаций науки. Они играют роль весьма общей эвристики, обеспечивающей интенсивное развитие исследований. В истории современной физики примерами тому могут служить философский анализ понятий пространства и времени, а также анализ операциональных оснований физической теории, проделанный Эйнштейном и предшествовавший перестройке представлений об абсолютном пространстве и времени классической физики. Философско-методологические средства активно используются при перестройке оснований науки и в той ситуации, когда доминирующую роль играют факторы междисциплинарного взаимодействия. Особенности этого варианта научной революции состоят в том, что для преобразования картины реальности и норм исследования некоторой науки в принципе не обязательно, чтобы в ней были зафиксированы парадоксы. Преобразование ее оснований осуществляется за счет переноса парадигмальных установок и принципов из других дисциплин, что заставляет исследователей по-новому оценить еще не объясненные факты (если раньше считалось, по крайней мере большинством исследователей, что указанные факты можно объяснить в рамках ранее принятых оснований науки, то давление новых установок способно породить оценку указанных фактов как аномалий, объяснение которых предполагает перестройку оснований исследования). Обычно в качестве парадигмальных принципов, "прививаемых" в другие науки, выступают компоненты оснований лидирующей науки. Ядро ее картины реальности образует в определенную историческую эпоху фундамент общей научной картины мира, а принятые в ней идеалы и нормы обретают общенаучный статус. Философское осмысление и обоснование этого статуса подготавливает почву для трансляции некоторых идей, принципов и методов лидирующей дисциплины в другие науки. Внедряясь в новую отрасль исследования, парадигмальные принципы науки затем как бы притачиваются к специфике новой области, превращаясь в картину реальности соответствующей дисциплины и в новые для нее нормативы исследования. Показательным примером в этом отношении могут служить революции в химии XVII - первой половине XIX столетия, связанные с переносом в химию из физики идеалов количественного описания, представлений о силовых взаимодействиях между частицами и представлений об атомах. Идеалы количественного описания привели к разработке в химии XVII - XVIII вв. конкретных методов количественного анализа, которые, в свою очередь, взрывали изнутри флогистонную концепцию химических процессов. Представления о силовых взаимодействиях и атомистическом строении вещества, заимствованные из механической картины мира, способствовали формированию новой картины химической реальности, в которой взаимодействия химических элементов интерпретировались как действие "сил химического сродства" (А. Лавуазье, К. Бертолле), а химические элементы были представлены в качестве атомов вещества (первый гипотетический вариант этих представлений в химии был предложен Р. Бойлем еще в XVII столетии, а в начале XIX в. благодаря работам Дальтона атомистические идеи получили эмпирическое обоснование и окончательно утвердились в химии). Парадигмальные принципы, модифицированные и развитые применительно к специфике объектов некоторой дисциплины, затем могут оказать обратное воздействие на те науки, из которых они были первоначально заимствованы. В частности, развитые в химии представления о молекулах как соединении атомов затем вошли в общую научную картину мира и через нее оказали значительное воздействие на физику в период разработки молекулярно-кинетической теории теплоты. На современном этапе развития научного знания в связи с усиливающимися процессами взаимодействия наук способы перестройки оснований за счет "прививки" парадигмальных установок из одной науки в другие все активнее начинают влиять на внутридисциплинарные механизмы интенсивного роста знаний и даже управлять этими механизмами. Научная революция как выбор новых стратегий исследования Перестройка оснований исследования означает изменение самой стратегии научного поиска. Однако всякая новая стратегия утверждается не сразу, а в длительной борьбе с прежними установками и традиционными видениями реальности. Процесс утверждения в науке ее новых оснований определен не только предсказанием новых фактов и генерацией конкретных теоретических моделей, но и причинами социокультурного характера. Новые познавательные установки и генерированные ими знания должны быть вписаны в культуру соответствующей исторической эпохи и согласованы с лежащими в ее фундаменте ценностями и мировоззренческими структурами. Перестройка оснований науки в период научной революции с этой точки зрения представляет собой выбор особых направлений роста знаний, обеспечивающих как расширение диапазона исследования объектов, так и определенную скоррелированность динамики знания с ценностями и мировоззренческими установками соответствующей исторической эпохи. В период научной революции имеются несколько возможных путей роста знания, которые, однако, не все реализуются в действительной истории науки. Можно выделить два аспекта нелинейности роста знаний. Первый из них связан с конкуренцией исследовательских программ в рамках отдельно взятой отрасли науки. Победа одной и вырождение другой программы направляют развитие этой отрасли науки по определенному руслу, но вместе с тем закрывают какие-то иные пути ее возможного развития. Рассмотрим в качестве примера борьбу двух направлений в классической электродинамике Ампера-Вебера, с одной стороны, и Фарадея-Максвелла, с другой. Максвелл, создавая теорию электромагнитного поля, длительное время не получал новых результатов, по сравнению с теми, которые давала электродинамика Ампера-Вебера. Внешне все выглядело как вывод уже известных законов в новой математической форме. Лишь в конечном итоге, открыв фундаментальные уравнения электромагнетизма, Максвелл получил знаменитые волновые решения и предсказал существование электромагнитных волн. Их экспериментальное обнаружение привело к триумфу максвелловского направления и утвердило представления о близкодействии и силовых полях как единственно верную основу физической картины мира. Однако в принципе эффекты, которые интерпретировались как доказательство электромагнитных волн, могли быть предсказаны и в рамках амперовского направления. Известно, что в 1845 г. К. Гаусс в письме к В. Веберу указывал, что для дальнейшего развития теории Ампера-Вебера следует в дополнение к известным силам действия между зарядами допустить существование других сил, распространяющихся с конечной скоростью. Г. Риман осуществил эту программу и вывел уравнение для потенциала, аналогичное лоренцовским уравнениям для запаздывающих потенциалов. В принципе это уравнение могло бы лечь в основу предсказания тех эффектов, которые были интерпретированы в парадигме максвелловской электродинамики как распространение электромагнитных волн. Но этот путь развития электродинамики предполагал физическую картину мира, в которой постулировалось распространение сил с различной скоростью в пустом пространстве. В такой картине мира отсутствует эфир и представление об электромагнитных полях. И тогда возникает вопрос: как могла бы выглядеть в этой нереализованной линии развития физики теория электронов, каков был бы путь к теории относительности. Физическая картина мира, в которой взаимодействие зарядов изображалось бы как передача сил с конечной скоростью без представлений о материальных полях, вполне возможна. Показательно, что именно такой образ электромагнитных взаимодействий Р. Фейнман использовал как основу для новой формулировки классической электродинамики, опираясь на которую он развил идею построения квантовой электродинамики в терминах интегралов по траекториям. В какой-то мере можно расценивать фейнмановскую переформулировку классической электродинамики как воспроизведение в современных условиях ранее нереализованных, но потенциально возможных путей исторического развития физики. Однако при этом необходимо учитывать, что современные представления о природе формируются уже в иной научной традиции, чем в классическую эпоху, при наличии новых идеалов и норм объяснения физических процессов. Развитие квантово-релятивистской физики, утверждая эти нормы, "приучило" физиков к множественности различных формулировок теории, каждая из которых способна выразить существенные характеристики исследуемой предметной области. Физик-теоретик XX в. относится к различным математическим описаниям одних и тех же процессов не как к аномалии, а как к норме, понимая, что одни и те же объекты могут быть освоены в различных языковых средствах и что различные формулировки одной и той же физической теории являются условием прогресса исследований. В традициях современной физики лежит и оценка картины мира как относительно истинной системы представлений о физическом мире, которая может изменяться и совершенствоваться как в частях, так и в целом. Поэтому, когда, например, Р. Фейнман развивал идеи о взаимодействиях зарядов без "полевых посредников", его не смутило то обстоятельство, что в создаваемую теорию потребовалось ввести, наряду с запаздывающими, опережающие потенциалы, что в физической картине мира соответствовало появлению представлений о влиянии взаимодействий настоящего не только на будущее, но и на прошлое. "К этому времени, - писал Р. Фейнман, - я был уже в достаточной мере физиком, чтобы не сказать: "Ну, нет, этого не может быть". Ведь сегодня после Эйнштейна и Бора все физики знают, что иногда идея, кажущаяся с первого взгляда совершенно парадоксальной, может оказаться правильной после того, как мы разберемся в ней до мельчайших подробностей и до самого конца и найдем ее связь с экспериментом". Но "быть физиком" XX в. - нечто иное, чем "быть физиком" XIX в. В классический период физик не стал бы вводить "экстравагантных" представлений о физическом мире на том основании, что у него возникает новая и перспективная математическая форма теории, детали эмпирического обоснования которой можно разработать в будущем. В классическую эпоху физическая картина мира, прежде чем генерировать новые теоретические идеи, должна была предстать как подтверждаемый опытом "наглядный портрет" реальности, который предшествовал построению теории. Формирование конкурирующих картин исследуемой реальности предполагало жесткую их конфронтацию, в условиях которой каждая из них рассматривалась своими сторонниками как единственно правильная онтология. С этих позиций следует оценивать возможности реализации программы Гаусса-Римана в физике XIX столетия. Чтобы ввести в физическую картину мира этой эпохи представление о силах, распространяющихся с различными скоростями, нужно было обосновать это представление в качестве наглядного образа "реального устройства природы". В традициях физического мышления этой эпохи сила всегда связывалась с материальным носителем. Поэтому ее изменения во времени от точки к точке (разные скорости распространения силы) предполагали введение материальной субстанции, с состоянием которой связано изменение скорости распространения сил. Но такие представления уже лежали в русле фарадеевско-максвелловской программы и были несовместимы с картиной Ампера-Вебера (в этой картине связь силы и материи рассматривалась как взаимосвязь между электрическими силами и силами тяготения, с одной стороны, и зарядами и массами - с другой; заряды и массы представали здесь в качестве материального носителя сил; принцип же мгновенной передачи сил в пространстве исключал необходимость введения особой субстанции, обеспечивающей передачу сил от точки к точке). Таким образом, причины, по которым идея Гаусса-Римана не оставила значительного следа в истории классической электродинамики XIX столетия, коренилась в стиле физического мышления данной исторической эпохи. Этот стиль мышления с его интенцией на построение окончательно истинных представлений о сущности физического мира был одним из проявлений "классического" типа рациональности, реализованного в философии, науке и других феноменах сознания этой исторической эпохи. Такой тип рациональности предполагает, что мышление как бы со стороны обозревает объект, постигая таким путем его истинную природу. Современный же стиль физического мышления (в рамках которого была осуществлена нереализованная, но возможная линия развития классической электродинамики) предстает как проявление иного, неклассического типа рациональности, который характеризуется особым отношением мышления к объекту и самому себе. Здесь мышление воспроизводит объект как вплетенный в человеческую деятельность и строит образы объекта, соотнося их с представлениями об исторически сложившихся средствах его освоения. Мышление нащупывает далее и с той или иной степенью отчетливости осознает, что оно само есть аспект социального развития и поэтому детерминировано этим развитием. В таком типе рациональности однажды полученные образы сущности объекта не рассматриваются как единственно возможные (в иной системе языка, в иных познавательных ситуациях образ объекта может быть иным, причем во всех этих варьируемых представлениях об объекте можно выразить объективно-истинное содержание). Сам процесс формирования современного типа рациональности обусловлен процессами исторического развития общества, изменением "поля социальной механики", которая "подставляет вещи сознанию". Исследование этих процессов представляет собой особую задачу. Но в общей форме можно констатировать, что тип научного мышления, складывающийся в культуре некоторой исторической эпохи, всегда скоррелирован с характером общения и деятельности людей данной эпохи, обусловлен контекстом ее культуры. Факторы социальной детерминации познания воздействуют на соперничество исследовательских программ, активизируя одни пути их развертывания и притормаживая другие. В результате "селективной работы" этих факторов в рамках каждой научной дисциплины реализуются лишь некоторые из потенциально возможных путей научного развития, а остальные остаются нереализованными тенденциями. Второй аспект нелинейности роста научного знания связан со взаимодействием научных дисциплин, обусловленным в свою очередь особенностями как исследуемых объектов, так и социокультурной среды, внутри которой развивается наука. Возникновение новых отраслей знания, смена лидеров науки, революции, связанные с преобразованиями картин исследуемой реальности и нормативов научной деятельности в отдельных ее отраслях, могут оказывать существенное воздействие на другие отрасли знания, изменяя их видение реальности, их идеалы и нормы исследования. Все эти процессы взаимодействия наук опосредуются различными феноменами культуры и сами оказывают на них активное обратное воздействие. Учитывая все эти сложные опосредования, в развитии каждой науки можно выделить еще один тип потенциально возможных линий в ее истории, который представляет собой специфический аспект нелинейности научного прогресса. Особенности этого аспекта можно проиллюстрировать путем анализа истории квантовой механики. Известно, что одним из ключевых моментов ее построения была разработка Н. Бором новой методологической идеи, согласно которой представления о физическом мире должны вводиться через экспликацию операциональной схемы, выявляющей характеристики исследуемых объектов. В квантовой физике эта схема выражена посредством принципа дополнительности, согласно которому природа микрообъекта описывается путем двух дополнительных характеристик, коррелятивных двум типам приборов. Эта "операциональная схема" соединялась с рядом онтологических представлений, например, о корпускулярно-волновой природе микрообъектов, существовании кванта действия, об объективной взаимосвязи динамических и статических закономерностей физических процессов. Однако квантовая картина физического мира не была целостной онтологией в традиционном понимании. Она не изображала природные процессы как причинно обусловленные взаимодействия некоторых объектов в пространстве и времени. Пространственно-временное и причинное описания представали как дополнительные (в смысле Бора) характеристики поведения микрообъектов. Отнесение к микрообъекту обоих типов описания осуществлялось только через экспликацию операциональной схемы, которая объединяла различные и внешне несовместимые фрагменты онтологических представлений. Такой способ построения физической картины мира получил философское обоснование, с одной стороны, посредством ряда гносеологических идей (об особом месте в мире наблюдателя как макросущества, о коррелятивности между способами объяснения и описания объекта и познавательными средствами), а с другой - благодаря развитию "категориальной сетки", в которой схватывались общие особенности предмета исследования (представление о взаимодействиях как превращении возможности в действительность, понимание причинности в широком смысле, как включающей вероятностные аспекты, и т.д.). Таким путем была построена концептуальная интерпретация математического аппарата квантовой механики. В период формирования этой теории описанный путь был, по-видимому, единственно возможным способом теоретического познания микромира. Но в дальнейшем (в частности, на современном этапе) наметилось видение квантовых объектов как сложных динамических систем (больших систем). Анализ квантовой теории показывает, что в самой ее концептуальной структуре имеются два уровня описания реальности: с одной стороны, понятия, описывающие целостность и устойчивость системы, с другой - понятия, выражающие типично случайные ее характеристики. Идея такого расчленения теоретического описания соответствует представлению о сложных системах, характеризующихся, с одной стороны, наличием подсистем со стохастическим взаимодействием между элементами, с другой - некоторым "управляющим" уровнем, обеспечивающим целостность системы. В пользу такого видения квантовых объектов говорят и те достижения теории квантованных полей, которые показывают ограниченность сложившихся представлений о локализации частиц. Отмечая все эти тенденции в развитии физического знания, нельзя забывать, что само видение физических объектов как сложных динамических систем связано с концепцией, которая сформировалась благодаря развитию кибернетики, теории систем и освоению больших систем в производстве. В период становления квантовой механики эта концепция еще не сложилась в науке, и в обиходе физического мышления не применялись представления об объектах как больших системах. В этой связи уместно поставить вопрос: могла ли история квантовой физики протекать иными путями при условии иного научного окружения? В принципе допустимо (в качестве мысленного эксперимента) предположение, что кибернетика и соответствующее освоение самоорганизующихся систем в технике могли возникнуть до квантовой физики и сформировать в культуре новый тип видения объектов. В этих условиях при построении картины мира физик смог бы представить квантовые объекты как сложные динамические системы и соответственно этому представлению создавать теорию. Но тогда иначе выглядела бы вся последующая эволюция физики. На этом пути ее развития, по-видимому, были бы не только приобретения, но и потери, поскольку при таком движении не обязательно сразу эксплицировать операциональную схему видения картины мира (а значит, и не было бы стимула к развитию принципа дополнительности). То обстоятельство, что квантовая физика развилась на основе концепции дополнительности, радикально изменив классические нормы и идеалы физического познания, направило эволюцию науки по особому руслу. Появился образец нового познавательного движения, и теперь, даже если физика построит новую системную онтологию (новую картину реальности), это не будет простым возвратом к нереализованному ранее пути развития: онтология должна вводиться через построение операциональной схемы, а новая теория может создаваться на основе включения операциональных структур в картину мира. Развитие науки (как, впрочем, и любой другой процесс развития) осуществляется как превращение возможности в действительность, и не все возможности реализуются в ее истории. При прогнозировании таких процессов всегда строят дерево возможностей, учитывают различные варианты и направления развития. Представления о жестко детерминированном развитии науки возникают только при ретроспективном рассмотрении, когда мы анализируем историю, уже зная конечный результат, и восстанавливаем логику движения идей, приводящих к этому результату. Но были возможны и такие направления, которые могли бы реализоваться при других поворотах исторического развития цивилизации, но они оказались "закрытыми" в уже осуществившейся реальной истории науки. В эпоху научных революций, когда осуществляется перестройка оснований науки, культура как бы отбирает из нескольких потенциально возможных линий будущей истории науки те, которые наилучшим образом соответствуют фундаментальным ценностям и мировоззренческим структурам, доминирующим в данной культуре. Глобальные научные революции: от классической к постнеклассической науке В развитии науки можно выделить такие периоды, когда преобразовывались все компоненты ее оснований. Смена научных картин мира сопровождалась коренным изменением нормативных структур исследования, а также философских оснований науки. Эти периоды правомерно рассматривать как глобальные революции, которые могут приводить к изменению типа научной рациональности. В истории естествознания можно обнаружить четыре таких революции. Первой из них была революция XVII в., ознаменовавшая собой становление классического естествознания. Его возникновение было неразрывно связано с формированием особой системы идеалов и норм исследования, в которых, с одной стороны, выражались установки классической науки, а с другой - осуществлялась их конкретизация с учетом доминанты механики в системе научного знания данной эпохи. Через все классическое естествознание начиная с XVII в. проходит идея, согласно которой объективность и предметность научного знания достигается только тогда, когда из описания и объяснения исключается все, что относится к субъекту и процедурам его познавательной деятельности. Эти процедуры принимались как раз навсегда данные и неизменные. Идеалом было построение абсолютно истинной картины природы. Главное внимание уделялось поиску очевидных, наглядных, "вытекающих из опыта" онтологических принципов, на базе которых можно строить теории, объясняющие и предсказывающие опытные факты. В XVIIXVIII столетии эти идеалы и нормативы исследования сплавлялись с целым рядом конкретизирующих положений, которые выражали установки механического понимания природы. Объяснение истолковывалось как поиск механических причин и субстанций - носителей сил, которые детерминируют наблюдаемые явления. В понимание обоснования включалась идея редукции знания о природе к фундаментальным принципам и представлениям механики. В соответствии с этими установками строилась и развивалась механическая картина природы, которая выступала одновременно и как картина реальности, применительно к сфере физического знания, и как общенаучная картина мира. Наконец, идеалы, нормы и онтологические принципы естествознания XVIIXVIII столетий опирались на специфическую систему философских оснований, в которых доминирующую роль играли идеи механицизма. В качестве эпистемологической составляющей этой системы выступали представления о познании как наблюдении и экспериментировании с объектами природы, которые раскрывают тайны своего бытия познающему разуму. Причем сам разум наделялся статусом суверенности. В идеале он трактовался как дистанцированный от вещей, как бы со стороны наблюдающий и исследующий их, не детерминированный никакими предпосылками, кроме свойств и характеристик изучаемых объектов. Эта система эпистемологических идей соединялась с особыми представлениями об изучаемых объектах. Они рассматривались преимущественно в качестве малых систем (механических устройств) и соответственно этому применялась "категориальная сетка", определяющая понимание и познание природы. Напомним, что малая система характеризуется относительно небольшим количеством элементов, их силовыми взаимодействиями и жестко детерминированными связями. Для их освоения достаточно полагать, что свойства целого полностью определяются состоянием и свойствами его частей, вещь представлять как относительно устойчивое тело, а процесс как перемещение тел в пространстве с течением времени, причинность трактовать в лапласовском смысле. Соответствующие смыслы как раз и выделялись в категориях "вещь", "процесс", "часть", "целое", "причинность", "пространство" и "время" и т.д., которые образовали онтологическую составляющую философских оснований естествознания XVIIXVIII вв. Эта категориальная матрица обеспечивала успех механики и предопределяла редукцию к ее представлениям всех других областей естественно-научного исследования. Радикальные перемены в этой целостной и относительно устойчивой системе оснований естествознания произошли в конце XVIII - первой половине XIX в. Их можно расценить как вторую глобальную научную революцию, определившую переход к новому состоянию естествознания - дисциплинарно организованной науке. В это время механическая картина мира утрачивает статус общенаучной. В биологии, химии и других областях знания формируются специфические картины реальности, нередуцируемые к механической. Одновременно происходит дифференциация дисциплинарных идеалов и норм исследования. Например, в биологии и геологии возникают идеалы эволюционного объяснения, в то время как физика продолжает строить свои знания, абстрагируясь от идеи развития. Но и в ней, с разработкой теории поля, начинают постепенно размываться ранее доминировавшие нормы механического объяснения. Все эти изменения затрагивали главным образом третий слой организации идеалов и норм исследования, выражающий специфику изучаемых объектов. Что же касается общих познавательных установок классической науки, то они еще сохраняются в данный исторический период. Соответственно особенностям дисциплинарной организации науки видоизменяются ее философские основания. Они становятся гетерогенными, включают довольно широкий спектр смыслов тех основных категориальных схем, в соответствии с которыми осваиваются объекты (от сохранения в определенных пределах механицистской традиции до включения в понимание "вещи", "состояния", "процесса" и другие идеи развития). В эпистемологии центральной становится проблема соотношения разнообразных методов науки, синтеза знаний и классификации наук. Выдвижение ее на передний план связано с утратой прежней целостности научной картины мира, а также с появлением специфики нормативных структур в различных областях научного исследования. Поиск путей единства науки, проблема дифференциации и интеграции знания превращаются в одну из фундаментальных философских проблем, сохраняя свою остроту на протяжении всего последующего развития науки.
|
|||
|