Хелпикс

Главная

Контакты

Случайная статья





Рисунок 1.1 - Схемы мостиков с выключателями



 

1. Виды схем и их назначение

Главная схема электрических соединений электростанции (подстанции) — это совокупность основного электрооборудования (генераторы, трансформаторы, линии), сборных шин, коммутационной и другой первичной аппаратуры со всеми выполненными между ними в натуре соединениями.

Выбор главной схемы является определяющим при проектировании электрической части электростанции (подстанции), так как он определяет полный состав элементов и связей между ними. Выбранная главная схема является исходной при составлении принципиальных схем электрических соединений, схем собственных нужд, схем вторичных соединений, монтажных схем и т. д.

На чертеже главные схемы изображаются в однолинейном исполнении при отключенном положении всех элементов установки. В некоторых случаях допускается изображать отдельные элементы схемы в рабочем положении.

Рис. 1. Виды схем (на примере подстанции 110/10 кВ)

Все элементы схемы и связи между ними изображаются в соответствии со стандартами единой системы конструкторской документации (ЕСКД).

В условиях эксплуатации, наряду с принципиальной, главной схемой, применяются упрощенные оперативные схемы, в которых указывается только основное оборудование. Дежурный персонал каждой смены заполняет оперативную схему и вносит в нее необходимые изменения в части положения выключателей и разъединителей, происходящие во время дежурства.

При проектировании электроустановки до разработки главной схемы составляется структурная схема выдачи электроэнергии (мощности), на которой показываются основные функциональные части электроустановки (распределительные устройства, трансформаторы, генераторы) и связи между ними. Структурные схемы служат для дальнейшей разработки более подробных и полных принципиальных схем, а также для общего ознакомления с работой электроустановки.

На чертежах этих схем функциональные части изображаются в виде треугольников или условных графических изображений (рис. 1, а). Никакой аппаратуры (выключателей, разъединителей, трансформаторов тока и т.д.) на схеме не показывают.

На рис. 1,б показана главная схема этой же подстанции без некоторых аппаратов - трансформаторов тока, напряжения, разрядников. Такая схема является упрощенной принципиальной схемой электрических соединений. На полной принципиальной схеме (рис.1, в) указывают все аппараты первичной цепи, заземляющие ножи разъединителей и отделителей, указывают также типы применяемых аппаратов. В оперативной схеме (рис. 1, г) условно показаны разъединители и заземляющие ножи. Действительное положение этих аппаратов (включено, отключено) показывается на схеме дежурным персоналом каждой смены.

Согласно ГОСТ 2.710-81, буквенно-цифровое обозначение в электрических схемах состоит из трех частей: 1-я указывает вид элемента, 2-я - его порядковый номер, 3-я — его функцию. Вид и номер являются обязательной частью условного буквенно-цифрового обозначения и должны присваиваться всем элементам и устройствам объекта. Указание функции элемента (3-я часть обозначения) необязательно.

В 1-й части записывают одну или несколько букв латинского алфавита (буквенные коды для элементов электрических схем), во 2-й части — одну или несколько арабских цифр, характеризующих порядковый номер элемента. Например, QS1 - разъединитель №1, Q2 — выключатель № 2; QB — секционный выключатель. В ведущих проектных организациях используются более сложные обозначения проектных функциональных групп.

2. Основные требования к главным схемам электроустановок

 При выборе схем электроустановок должны учитываться следующие факторы:

1) значение и роль электростанции или подстанции для энергосистемы.

Электростанции, работающие параллельно в энергосистеме, существенно различаются по своему назначению. Одни из них, базисные, несут основную нагрузку, другие, пиковые, работают неполные сутки во время максимальных нагрузок, третьи несут электрическую нагрузку, определяемую их тепловыми потребителями (ТЭЦ). Разное назначение электростанций определяет целесообразность применения разных схем электрических соединений даже в том случае, когда количество присоединений одно и то же.

Подстанции могут предназначаться для питания отдельных потребителей или крупного района, для связи частей энергосистемы или различных энергосистем. Роль подстанций определяет ее схему;

2) положение электростанции или подстанции в энергосистеме, схемы и напряжения прилегающих сетей. Шины высшего напряжения электростанций и подстанций могут быть узловыми точками энергосистемы, осуществляя объединение на параллельную работу нескольких электростанций. В этом случае через шин ы происходит переток мощности из одной части энергосистемы в другую - транзит мощности. При выборе схем таких электроустановок в первую очередь учитывается необходимость сохранения транзита мощности.

Подстанции могут быть тупиковыми, проходными, отпаечными; схемы таких подстанций будут различными даже при одном и том же числе трансформаторов одинаковой мощности.

Схемы распредустройств 6—10 кВ зависят от схем электроснабжения потребителей: питание по одиночным или параллельным линиям, наличие резервных вводов у потребителей и т. п.;

3) категория потребителей по степени надежности электроснабжения. Все потребители с точки зрения надежности электроснабжения разделяю на три категории.

При небольшом количестве присоединений на стороне 35-220кВ применяют упрощенные схемы, в которых обычно отсутствуют сборные шины, число выключателей уменьшенное в некоторых схемах выключатели вообще могут отсутствовать. Упрощенные схемы позволяют уменьшить расход электрооборудования, строительных материалов, снизить стоимость РУ. Такие схемы получили наибольшее распространение на подстанциях. Одной из упрощенных схем является схема блока трансформатор – линия. В блочных схемах элементы электроустановки соединяются последовательно без поперечных связей с другими блоками. При аварии в линии отключаются выключатель в начале ЛЭП (на районной подстанции) и выключатель со стороны высшего напряжения трансформатора. При КЗ в трансформаторе отключаются выключатели со стороны высшего и низшего напряжений трансформатора. Основным достоинством схемы является экономичность, что привело к широкому применению таких схем для однотрансформаторных подстанций, включаемых глухой отпайкой к транзитной ЛЭП. Кольцевые схемы. В кольцевых схемах (схемах многоугольников) выключатели соединяются между собой, образуя кольцо. Каждый элемент линия, трансформатор – присоединяется между двумя соседними выключателями. Самый простой кольцевой схемой является схема треугольника (рис. а). В схеме треугольника на три присоединения приходится три выключателя, поэтому схема экономична. Схема треугольник расширению не подлежит.

 Кольцевые схемы.

В кольцевых схемах ремонт любого выключателя производится без перерыва работы какого – либо элемента. Так, при ремонте первого выключателя отключают его и разъединители, установленные по обе стороны выключателя. При этом обе линии и трансформатор остаются в работе, однако схема становится менее надёжной из – за разрыва кольца. В кольцевых схемах надёжность работы выключателей выше, чем в других схемах, так как имеется возможность опробования любого выключателя в период нормальной работы схемы. На рисунке б) представлена схема четырёхугольника (квадрата). Эта схема экономична ( 4 выключателя на 4 присоединения), позволяет производить опробование и ревизию любого выключателя без нарушения работы её элементов. Схема обладает высокой надёжностью. Отказ от установки разъединителей в цепях линий приводит к сложным работам по реконструкции ОРУ в случае добавления хотя бы одной ЛЭП и переходе к схеме расширенного четырёхугольника (рис. в). Достоинством всех кольцевых схем является использование разъединителей только для ремонтных работ. К недостаткам кольцевых схем следует отнести более сложный выбор трансформаторов тока, выключателей и разъединителей, установленных в кольце, так как в зависимости от режима работы схемы ток, протекающий по аппаратам, меняется. Схема четырёхугольника применяется на подстанциях напряжением 220кВ и выше.

 Схемы с одной рабочей и обходной системами шин. При большом количестве присоединений на повышенном напряжении возможно применение схем с одиночной секционированной системы шин, о недостатках которой было указано выше. В частности, при напряжениях 110кВ и выше длительность ремонта выключателей, особенно воздушных возрастает и становится недопустимым отключать цепь на всё время ремонта, поэтому секционированная система сборных шин применяется только для РУ напряжением до 35кВ включительно. Одним из важных требований к схемам на стороне высшего напряжения является возможность ревизий и опробований выключателей без перерыва работы. Этим требованиям отвечает схема с обходной системой шин. В нормальном режиме обходная система шин находится без напряжения, разъединители, соединяющие линии и трансформаторы с обходной системой шин, отключены. В схеме предусматривается обходной выключатель ВО, который может быть присоединён к любой секции с помощью развилки из двух разъединителей. В случае ремонта любого линейного выключателя его функции принимает на себя обходной выключатель.

Схема электрических соединений подстанции выбирается с использованием типовых схем РУ 35 - 750 кВ. Нетипичная схема может применяться только при наличии технико-экономических обоснований. Обычно нетипичные схемы применяются при реконструкции действующих подстанций [1].

При двух линиях 35-110 кВ и двух трансформаторах возможно применение схемы мостиков (рисунок 1.1).

а) б)

Рисунок 1.1 - Схемы мостиков с выключателями

а) - перемычка в сторону трансформаторов б) - перемычка в сторону линий

В схеме для четырех присоединений устанавливается три выключатели В1, В2, В3 (рисунок 1.1, а). Нормально выключатель В3 на перемычке между двумя линиями Л1 и Л2 включен. При повреждении на линии Л1 отключается выключатель В1, трансформаторы Т1 и Т2 остаются в работе, связь с энергосистемой осуществляется по линии Л2. При повреждении в трансформаторе Т1 отключается выключатель В4 со стороны 6-10 кВ и выключатели В1 и В3. В этом случае линия Л1 оказалась выключенной, хотя никаких повреждений на ней нет, что является недостатком схемы мостика.

Если учесть, что аварийное отключение трансформаторов случается редко, то такой недостаток схемы является несущественным, тем более что после отключения В1 и В3 и при необходимости вывода в ремонт поврежденного трансформатора отключают разъединитель Р1 и включают В1, В3, возвращает линию Л1 в работу. Более существенным недостатком схемы является отключение соответствующих линий при ревизии выключателя В1 и В2 на все время проведения ремонта.

Плановые отключения трансформатора проводятся так же, как в схеме блока трансформатор-линия: отключают выключатель В4 и разъединителем Р1 отключают ток намагничивания трансформатора, если это допустимо по его мощности.

Для удобства проведения операции разъединители Р1, Р2 могут быть заменены отделителями.

Основным преимуществом схемы является экономичность (три выключатели на четыре присоединения) и простота. Конструкция распределительного устройства должна предусматривать возможность перехода от мостовой схемы к другим схемам при расширении подстанции.

Возможно применение второго варианта схемы мостика (рисунок 1.1, б) с перемычкой в сторону линий. В такой схеме аварийное отключение линии приведет к отключению неповрежденного трансформатора. Аварийность линий значительно выше, чем трансформаторов, поэтому второй вариант схемы мостика применяется при коротких линиях.

Для сохранения в работе обеих линий при ревизии любого из выключателей (В1, В2, В3) предусматривается дополнительная перемычка из двух разъединителей Р3, Р4 (рисунок 1.1, а).

Один из разъединителей (Р3) перемычки нормально выключен. Для ревизии выключателя В1 предварительно включают Р3, затем отключают В1 и разъединители по обе стороны выключателя. В результате оба трансформатора и обе линии остались в работе. Если в этом режиме произойдет КЗ на одной линии, то отключится В2, т.е. обе линии останутся без напряжения.

Для ревизии выключателя В3 также предварительно включают перемычку, а затем отключают В3. Этот режим имеет тот же недостаток: при КЗ на одной из линий отключаются обе линии.

Вероятность совпадения аварии с ревизией одного из выключателей возрастает с увеличением продолжительности ремонта выключателя.

Схема мостика с выключателями рекомендуется на подстанциях на среднем напряжении при двух выходных линиях и на высоком напряжении при необходимости секционирования сети или возможности перехода к другим схемам с выключателями.

Одной из упрощенных схем является схема блока трансформатор - линия с выключателями и неавтоматической перемычкой со стороны линий (рисунок 1.2).



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.