|
|||
При решении задач на смешанное соединение проводников обычно составляют так называемые эквивалентные схемы, выделяя участки с последовательным и параллельным соединением.
При решении задач на смешанное соединение проводников обычно составляют так называемые эквивалентные схемы, выделяя участки с последовательным и параллельным соединением. Пример 1. Сопротивление R1,2 заменило выделенный участок цепи, в котором два проводника соединены параллельно. Тогда мы можем найти сопротивление этого участка с параллельным соединением проводников: А теперь видно, что проводники R1,2 и R3 соединены последовательно. Общее сопротивление равно R = R1,2 + R3 = 4 + 2 = 6. Пример 2. В данном случае нужно развернуть схему, двигаясь от точки к точке. Видно, что в точке Б схема разветвляется, а в точке В ветви соединяются. Таким образом, эквивалентные схемы будут иметь вид: R2, R3 и R4 соединены последовательно. Поэтому R2,3,4 = R2 + R3 + R4 = 1 + 10 + 1 = 12 R2,3,4 и R5 соединены параллельно. Поэтому И в последней схеме проводники соединены последовательно. R = R2-5 + R1 + R6 = 1 + 4,8 + 1 = 6,8.
Пример 3. Найти распределение токов и напряжений в цепи.
Решение. Так как известны сила тока и сопротивление на первом участке, то можно найти напряжение на нем: U1 = I1 R1 = 1 ∙ 10 = 10 B. Первый и второй проводники соединены параллельно. Значит, напряжение на них одинаково, т.е. U1 = U2 = 10 В. Так как первый и второй проводники имеют одинаковое сопротивление, то сила тока на них одинакова: I2 = 1 А. При параллельном соединении I1,2 = I1 + I2 = 2 А. Участки 1-2, 3-4-5 и 6-7 соединены последовательно между собой, значит I3,4,5 = I6,7 = I1,2 = 2 A. Найдем общее сопротивление участка 3-4-5:
R3,4,5 = 3 Ом. Тогда можно найти напряжение на 3-4-5, при параллельном соединении оно одинаково на всех участках. U3,4,5 = I3,4,5 ∙R3,4,5 = 2 ∙ 3 = 6 В. U3 = U4 = U5 = 6 В. Зная напряжение на каждом из участков и сопротивление, можно найти силу тока на каждом участке.
|
|||
|