|
|||
Касательная плоскость и нормаль к поверхности8. Касательная плоскость и нормаль к поверхности
Пример. Найти уравнения касательной плоскости и нормали к поверхности в точке М(1, 1, 1). Уравнение касательной плоскости: Уравнение нормали:
9. Производная функции в данном направлении. Градиент функции
10. Приближенные вычисления с помощью полного дифференциала.
Пусть функция f(x, y) дифференцируема в точке (х, у). Найдем полное приращение этой функции: Если подставить в эту формулу выражение то получим приближенную формулу:
Пример. Вычислить приближенно значение , исходя из значения функции при x = 1, y = 2, z = 1.
Из заданного выражения определим Dx = 1,04 – 1 = 0,04, Dy = 1,99 – 2 = -0,01, Dz = 1,02 – 1 = 0,02. Найдем значение функции u(x, y, z) = Находим частные производные: Полный дифференциал функции u равен:
Точное значение этого выражения: 1,049275225687319176.
|
|||
|