Хелпикс

Главная

Контакты

Случайная статья





Метод непосредственного интегрирования



Метод непосредственного интегрирования

Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.

Метод интегрирования, при котором интеграл с помощью тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием.

Таким образом, алгоритм действий следующий:

1. тождественное преобразование подынтегральной функции;

2. применение свойств неопределенного интеграла: вынесение константы за знак интеграла, представление интеграла от суммы функций в вид суммы интегралов;

3. использование таблицы интегралов.

В простейших примерах для применения непосредственного интегрирования достаточно разложить подынтегральную функцию на слагаемые и постоянные величины вынести за знак интеграла.

При определенной практике интегрирования обычно эти действия проводят устно, записывая лишь результат интегрирования.

Пример 1. Найти .

Решение. Представляя интеграл от алгебраической суммы в виде суммы интегралов слагаемых, вынося постоянные множители за знаки интегралов и применяя формулы 1, 2 таблицы основных интегралов, получим

.

Замечание. Нет необходимости ставить произвольную постоянную после вычисления каждого интеграла, т.к. их сумма есть также произвольная постоянная, которую обозначают одной буквой и записывают в окончательный ответ.

Пример 2.Найти .

Решение. Возведём двучлен в квадрат и запишем каждое слагаемое в виде степенной функции, затем, произведя почленное деление и применив формулы 2, 3 таблицы основных интегралов, получим

.

Пример 3. Найти .

Решение. Заменив единицу в числителе выражением sin²x+cos²x и почленно разделив числитель на знаменатель, получим

.

Пример 4.Найти .

Решение. Прибавим и вычтем х² в числителе подынтегральной функции, вынесем за скобки х2 в знаменателе и почленно разделим числитель на знаменатель. Получим:

Пример 5.Найти .

Решение. Воспользуемся формулой тригонометрии . Тогда получим

.

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.