|
|||
Метод непосредственного интегрированияМетод непосредственного интегрирования Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду. Метод интегрирования, при котором интеграл с помощью тождественных преобразований подынтегральной функции и применения свойств интеграла приводится к одному или нескольким табличным интегралам, называется непосредственным интегрированием. Таким образом, алгоритм действий следующий: 1. тождественное преобразование подынтегральной функции; 2. применение свойств неопределенного интеграла: вынесение константы за знак интеграла, представление интеграла от суммы функций в вид суммы интегралов; 3. использование таблицы интегралов. В простейших примерах для применения непосредственного интегрирования достаточно разложить подынтегральную функцию на слагаемые и постоянные величины вынести за знак интеграла. При определенной практике интегрирования обычно эти действия проводят устно, записывая лишь результат интегрирования. Пример 1. Найти . Решение. Представляя интеграл от алгебраической суммы в виде суммы интегралов слагаемых, вынося постоянные множители за знаки интегралов и применяя формулы 1, 2 таблицы основных интегралов, получим . Замечание. Нет необходимости ставить произвольную постоянную после вычисления каждого интеграла, т.к. их сумма есть также произвольная постоянная, которую обозначают одной буквой и записывают в окончательный ответ. Пример 2.Найти . Решение. Возведём двучлен в квадрат и запишем каждое слагаемое в виде степенной функции, затем, произведя почленное деление и применив формулы 2, 3 таблицы основных интегралов, получим . Пример 3. Найти . Решение. Заменив единицу в числителе выражением sin²x+cos²x и почленно разделив числитель на знаменатель, получим . Пример 4.Найти . Решение. Прибавим и вычтем х² в числителе подынтегральной функции, вынесем за скобки х2 в знаменателе и почленно разделим числитель на знаменатель. Получим: Пример 5.Найти . Решение. Воспользуемся формулой тригонометрии . Тогда получим .
|
|||
|