Хелпикс

Главная

Контакты

Случайная статья





Наибольшее и наименьшее значения функции на отрезке



Наибольшее и наименьшее значения функции на отрезке

 

Функция непрерывна на отрезке если:

1) она непрерывна на интервале ;
2) непрерывна в точке справа и в точке слева.

Функция непрерывна в точке справа, если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она же непрерывна в точке слева, если определена в данной точке и её левосторонний предел равен значению в этой точке:

Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:

 

Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси ), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём. В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса

Согласно второй теореме Вейерштрасса, непрерывная на отрезке функция достигает своейточной верхней грани и своейточной нижней грани .

Число также называют максимальным значением функции на отрезке и обозначают через , а число минимальным значением функции на отрезке с пометкой .

В нашем случае:

Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

Важно!наибольшее значение функции и наименьшее значение функцииНЕ ТО ЖЕ САМОЕ, что максимум функции и минимум функции. Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.

Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:

1) Находим значения функции в критических точках, которые принадлежат данному отрезку.

2) Вычисляем значения функции на концах отрезка.

3) Среди найденных в 1-м и 2-м пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.

Пример 1

Найти наибольшее и наименьшее значения функции на отрезке

Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

Полученное квадратное уравнение имеет два действительных корня:
– критические точки.

Первая критическая точка принадлежит данному отрезку:
А вот вторая – нет: , поэтому про неё сразу забываем.

Вычислим значение функции в нужной точке:

Итоговый результат я выделил жирным цветом, при оформлении задания в тетради его удобно обвести в кружок простым карандашом или пометить как-то по-другому.

2) Вычислим значения функции на концах отрезка:

Результаты опять каким-либо образом выделяем.

3) выбираем наибольшее и наименьшее.

Ответ:

Пример 2

Найти наибольшее и наименьшее значения функции на отрезке

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце

!Во-первых, критических точек может не оказаться вообще. Это очень хорошо – меньше вычислений. Просто записываем вывод: «критические точки отсутствуют» и переходим ко второму пункту алгоритма.

Во-вторых, все критические точки (одна, две или бОльшее количество) могут не принадлежать отрезку. Замечательно. Пишем следующее: «критические точки (а) не принадлежат (ит) рассматриваемому отрезку». Находить какие-то значения функции здесь, разумеется, тоже не надо.

Пример 3

Найти наибольшее и наименьшее значения функции на заданном отрезке

Решение: всё опять начинается дежурной фразой:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

Да, критических точек тут и правда целая команда:

Первые две точки принадлежат нашему отрезку:

Но третья оказывается вне игры:

(надеюсь, все сумели сосчитать )

Вычислим значения функции в подходящих точках:

2) Вычислим значения функции на концах отрезка:

Ответ:

Время от времени критические точки могут совпадать с одним или даже с обоими концами отрезка, и в этом случае укорачивается второй этап решения. Следующий пример для самостоятельного изучения посвящен как раз такой ситуации:

Пример 4

Найти наибольшее и наименьшее значения функции на заданном отрезке

Примерный образец решения в конце урока.

Пример 5

Найти максимальное и минимальное значения функции на отрезке

Решение: отрезок, надо сказать, творческий, но пример взят из конкретной контрольной работы и ни в коем случае не придуман.

1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:

Очевидный корень оказывается не в теме: .

Решаем уравнение:

Второй корень принадлежит нашему отрезку:

Вычислим значение функции во второй критической точке:

2) Вычислим значения функции на концах отрезка:

3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что :

Вот теперь всё понятно.

Ответ:

Дробно-рациональный экземпляр для самостоятельного решения:

Пример 6

Найти максимальное и минимальное значения функции на отрезке

Вычисления в данном случае не менее кропотливы и точно так же потребуют вмешательства калькулятора (если вы, конечно, не вундеркинд). Полное решение и ответ в конце

Пример 7

Найти максимальное и минимальное значения функции на отрезке

Решение:
1) Найдём критические точки. Предварительно можно раскрыть скобки, но не особо сложнее использовать и правило дифференцирования произведения:

– критические точки.

Обратите внимание, что точка обращает знаменатель производной в ноль, но её следует отнести к критическим значениям, поскольку САМА ФУНКЦИЯ определена в данной точке.

Кроме того, данная точка совпала с правым концом отрезка, а значит, в следующем пункте будет меньше расчётов. В следующем, но не сейчас:

2) Вычислим значения функции на концах отрезка:

уже известно.

Ответ:

Решения и ответы:

Пример 2: Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

– критические точки.

2)Вычислим значения функции на концах отрезка:

Ответ:

Пример 4: Решение:
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

– критические точки.

2) Вычислим значения функции на концах отрезка:
уже рассчитано в предыдущем пункте.

Ответ:

Пример 6: Решение:
1) Вычислим значения функции в критических точках, которые принадлежат данному отрезку:
– критические точки.

2) Вычислим значения функции на концах отрезка:

Ответ:

 

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.