|
|||
Влияние экологических факторов на фитопланктон.Влияние экологических факторов на фитопланктон. На состав и распределение фитопланктона по отдельным водоемам, на его изменение в пределах одного водоема влияет большой комплекс факторов. Первостепенное значение из физических факторов имеют световой режим, температура воды, а для глубоких водоемов - вертикальная устойчивость водных масс. Из химических факторов основное значение имеют соленость воды и содержание в ней питательных веществ, в первую очередь солей фосфора, азота, а для некоторых видов также железа и кремния. Рассмотрим некоторые из перечисленных факторов. Влияние освещенности как экологического фактора наглядно проявляется в вертикальном и сезонном распределении фитопланктона. В морях и озерах фитопланктон существует лишь в верхнем слое воды. Нижняя граница его в морских, более прозрачных водах находится на глубине 40-70 м и лишь в немногих местах достигает 100-120 м (Средиземное море, тропические воды Мирового океана). В озерных, значительно менее прозрачных водах фитопланктон существует обычно в верхних слоях, на глубине 10-15м, а в водах с очень малой прозрачностью встречается на глубине до 2-3м. Лишь в высокогорных и некоторых крупных озерах (например, Байкале) с прозрачной водой фитопланктон распространен до глубины 20-30м. Прозрачность воды в данном случае влияет на водоросли не прямо, а косвенно, поскольку она определяет интенсивность проникновения в водную толщу солнечной радиации, без которой невозможен фотосинтез. Это хорошо подтверждает сезонный ход развития фитопланктона в водоемах умеренных и высоких широт, замерзающих в зимний период. Зимой, когда водоем покрыт льдом, часто еще со слоем снега, несмотря на самую высокую в году прозрачность воды, фитопланктон почти отсутствует - встречаются лишь весьма редкие физиологически неактивные клетки некоторых видов, а у отдельных водорослей - споры или клетки в стадии покоя. При общей большой зависимости фитопланктона от освещенности оптимальные значения последней у отдельных видов варьируют в довольно широких пределах. Особенно требовательны к этому фактору зеленые водоросли и большинство видов сине-зеленых, в значительном количестве развивающихся в летний сезон. Некоторые виды сине-зеленых в массе развиваются только у самой поверхности воды: осциллатория (Oscillatoria) - в тропических морях, многие виды микроцистиса (Microcystis), анабены (АпаЬаепа) и др. - в мелких внутренних водоемах. Менее требовательны к условиям освещенности - диатомовые. Большинство из них избегает ярко освещенного приповерхностного слоя воды и более интенсивно развивается лишь на глубине 2-3м в малопрозрачных водах озер и на глубине 10-15м в прозрачных водах морей. Температура воды - важнейший фактор общего географического распределения фитопланктона и сезонных циклов его, но действует этот фактор во многих случаях не прямо, а косвенно. Многие водоросли способны переносить большой диапазон колебаний температуры (эвритермные виды) и встречаются в планктоне разных географических широт и в разные сезоны года. Однако зона температурного оптимума, в пределах которого наблюдается наибольшая продуктивность, для каждого вида обычно ограничена небольшими отклонениями температуры. Например, широко рас-пространенная в озерном планктоне умеренной зоны и субарктики диатомея мелозира исландская (Melosira islandica) обычно присутствует в планктоне (например, в Онежском и Ладожском озерах, в Неве) при температуре от + 1 до + 13 °С, максимальное же размножение ее наблюдается при температуре от +6 до +8 °С. Температурный оптимум у разных видов не совпадает, чем и определяется смена видового состава по сезонам, так называемая сезонная сукцессия видов. Общая схема годового цикла фитопланктона в озерах умеренных широт имеет следующий вид. Зимой подо льдом (особенно когда лед покрыт снегом) фитопланктон почти отсутствует в связи с недостатком солнечной радиации. Вегетационный цикл фитопланктона как сообщества начинается в марте - апреле, когда солнечной радиации достаточно для фотосинтеза водорослей даже подо льдом. В это время бывают довольно многочисленными мелкие жгутиковые - криптомонас (Cryptomonas), хромулина (Chromulina), хризококкус (Chrysococcus) - и начинается повышение численности холодноводных видов диатомовых - мелозиры (Melosira), диатомы (Diatoma) и др. Во вторую фазу весны - с момента вскрытия льда на озере до установления температурной стратификации, что обычно бывает при прогреве верхнего слоя воды до + 10, + 12 °С, наблюдается бурное развитие холодноводного комплекса диатомовых. В первую фазу летнего сезона, при температуре воды от +10 до + 15 °С, холодноводный комплекс диатомовых прекращает вегетацию, в планктоне в это время еще многочисленны диатомовые, но уже другие виды - умеренно тепловодные: астерионелла (Asterionella), табеллария (Tabellaria). Одновременно повышается продуктивность зеленых и сине-зеленых водорослей, а также хризомонад, часть видов которых достигает значительного развития уже во вторую фазу весны. Во вторую фазу лета, при температуре воды выше +15 °С, наблюдается максимум продуктивности сине-зеленых и зеленых водорослей. В зависимости от трофического и лимнологического типа водоема в это время может наблюдаться "цветение" воды, вызванное видами сине-зеленых (Anabaena, Aphanizomenon, Microcystis, Gloeotrichia, Oscillatoria) и зеленых водорослей (Scenedesmus, Pediastrum, Oocystis). Диатомовые летом, как правило, занимают подчиненное положение и представлены тепловодными видами: фрагиларией (Fragilaria) и мелозирой (Melosira granulata). Осенью, с понижением температуры воды до +10, +12 °С и ниже, снова наблюдается подъем продуктивности холодноводных видов диатомовых. Однако, в отличие от весеннего сезона, в это время заметно большую роль играют сине-зеленые водоросли. В морских водах умеренных широт весенняя фаза в фитопланктоне также выделяется вспышкой диатомовых водорослей; летняя же - повышением видового разнообразия и обилия перидиней при депрессии продуктивности фитопланктона в целом. Из химических факторов, влияющих на распределение фитопланктона, на первое место следует поставить солевой состав воды. При этом общая концентрация солей является важным фактором качественного (видового) распределения по типам водоемов, а концентрация питательных солей, прежде всего солей азота и фосфора,- количественного распределения, т. е. продуктивности. Общая концентрация солей нормальных (в экологическом смысле) природных вод варьирует в очень широких пределах: примерно от 5-10 до 36 000-38 000 мг/л (от 0,005-0,01 до 36-38‰). В этом диапазоне солености выделяются два основных класса водоемов: морские с соленостью 36-38‰, т. е. 36 000- 38 000 мг/л, и пресные с соленостью от 5-10 до 400-500 и даже до 1000 мг/л. Промежуточное положение по концентрации солей занимают солоноватые воды. Этим классам вод, как было показано выше, соответствуют и основные группы фитопланктона по видовому составу. Экологическое значение концентрации биогенных веществ проявляется в количественном распределении фитопланктона в целом и составляющих его видов. Продуктивность, или "урожайность", микроскопических водорослей фитопланктона, как и урожайность крупной растительности, при прочих нормальных условиях в очень большой степени зависит от концентрации питательных веществ в окружающей среде. Из минеральных питательных веществ для водорослей, как и для наземной растительности, в первую очередь необходимы соли азота и фосфора. Средняя концентрация этих веществ в большинстве естественных водоемов очень мала, и поэтому высокая продуктивность фитопланктона, как устойчивое явление, возможна лишь при условии постоянного поступления минеральных веществ в верхний слой воды - в зону фотосинтеза. Правда, некоторые сине-зеленые водоросли способны еще усваивать элементарный азот из растворенного в воде воздуха, однако таких видов немного и их роль в обогащении азотом бывает существенной лишь для очень мелких водоемов, в частности на рисовых полях. Внутренние водоемы удобряются азотом и фосфором с берега, за счет приноса питательных веществ речной водой с водосборной площади всей речной системы. Поэтому наблюдается четкая зависимость продуктивности озер и мелководных внутренних морей от плодородия почв и некоторых других факторов, действующих в пределах водосборной площади их бассейнов (речных систем). Наименее продуктивен фитопланктон приледниковых озер, а также водоемов, расположенных на кристаллических породах и в районах с большим количеством болот в пределах водосборной площади. Примером последних могут служить озера Северной Карелии, Кольского полуострова, Северной Финляндии, Швеции и Норвегии. Наоборот, водоемы, расположенные в пределах высокоплодородных почв, отличаются высоким уровнем продуктивности фитопланктона и других сообществ (Азовское море, нижневолжские водохранилища, Цимлянское водохранилище). Продуктивность фитопланктона зависит и от динамики воды, динамического режима вод. Влияние может быть прямым и косвенным, что, однако, не всегда легко различить. Турбулентное перемешивание, если оно не слишком интенсивно, при прочих благоприятных условиях прямо способствует повышению продуктивности диатомовых водорослей, так как многие виды этого отдела, обладая относительно тяжелой оболочкой из кремния, в спокойной воде опускаются на дно. Поэтому ряд массовых пресноводных видов, в частности из рода мелозира, интенсивно развиваются в планктоне озер умеренных широт лишь весной и осенью, в периоды активного вертикального перемешивания воды. При прекращении такого перемешивания, наступающем при прогреве верхнего слоя до +10, + 12 °С и образовании при этом во многих озерах температурного расслоения водной толщи, эти виды из планктона выпадают. Другие водоросли, прежде всего сине-зеленые, наоборот, не выносят даже относительно слабого турбулентного перемешивания воды. В противоположность диатомовым многие виды сине-зеленых наиболее интенсивно развиваются в предельно спокойной воде. Причины высокой чувствительности их к динамике вод не вполне установлены. Однако в тех случаях, когда вертикальное перемешивание вод распространяется на большую глубину, оно подавляет развитие даже относительно теневыносливых диатомовых. Связано это с тем, что при глубоком перемешивании водоросли периодически выносятся токами воды за пределы освещенной зоны - зоны фотосинтеза. Косвенное влияние динамического фактора на продуктивность фитопланктона состоит в том, что при вертикальном перемешивании воды питательные вещества поднимаются из придонных слоев воды, где они не могут быть использованы водорослями вследствие недостатка света. Здесь проявляется взаимодействие нескольких экологических факторов - светового и динамического режимов и обеспеченности питательными веществами. Такая взаимосвязь характерна для природных процессов. Уже в начале нашего века гидробиологи открыли особое значение фитопланктона в жизни водоемов как основного, а на обширных океанических просторах и единственного производителя первичного органического вещества, на базе которого создается все остальное многообразие водной жизни. Это определило повышенный интерес к изучению не только качественного состава фитопланктона, но и количественного распределения его, а также факторов, регулирующих это распределение. Элементарный метод количественной оценки фитопланктона, который на протяжении нескольких десятилетий был основным, да и теперь еще не полностью отвергнут,- метод отцеживания его из воды с помощью планктонных сеток. В сконцентрированной таким путем пробе просчитывают количество клеток и колоний по видам и определяют общую численность их на единицу поверхности водоема. Этот простой и доступный метод имеет, однако, существенный недостаток - он не полностью учитывает даже относительно крупные водоросли, а самые мелкие (наннопланктон), которые во многих водоемах значительно преобладают, планктонные сетки не улавливают. В настоящее время пробы фитопланктона берут в основном батометром или планктобатометром, позволяющим "вырезать" монолит воды с заданной глубины. Сгущение пробы производится методом осаждения в цилиндрах или фильтрацией через микрофильтры: то и другое гарантирует учет водорослей всех размеров. Когда определились огромные различия в размерах водорослей, составляющих фитопланктон (от нескольких до 1000 мкм и более), стало ясно, что для сравнительной оценки продуктивности фитопланктона по водоемам величинами численности пользоваться нельзя. Более реальным показателем для этой цели является общая биомасса фитопланктона на единицу площади водоема. Однако в дальнейшем и этот метод был забракован по двум основным причинам: во-первых, расчеты биомассы клеток, имеющих у разных видов разную конфигурацию, очень трудоемки; во-вторых, вклад мелких, но быстро размножающихся водорослей в общую продукцию сообщества за единицу времени может быть значительно большим, чем крупных, но медленно размножающихся. Истинным показателем продуктивности фитопланктона является скорость образования им вещества за единицу времени. Для определения этой величины пользуются физиологическим методом. В процессе фотосинтеза, происходящем только на свету, поглощается углекислота и выделяется кислород. Наряду с фотосинтезом происходит и дыхание водорослей. Последний процесс, связанный с поглощением кислорода и выделением углекислоты, превалирует в темноте, когда фотосинтез прекращается. Метод оценки продуктивности фитопланктона основан на количественном сопоставлении результатов фотосинтеза (процесса продукции) и дыхания (процесса деструкции) сообщества по балансу кислорода в водоеме. Для этой цели используются пробы воды в светлых и темных склянках, экспонируемых в водоеме обычно на сутки на разных глубинах. Для повышения чувствительности кислородного метода, непригодного для малопродуктивных вод, стали применять изотопную (радиоуглеродную) разновидность его. Однако впоследствии выявились недостатки кислородного метода в целом, и в настоящее время широко применяют хлорофилльный метод, основанный на определении содержания хлорофилла в количественной пробе фитопланктона. В настоящее время уровень продуктивности фитопланктона многих внутренних водоемов определяется не столько природными условиями, сколько общественно-экономическими, т. е. плотностью населения и характером хозяйственной деятельности в пределах водосборной площади водоема. Эта категория факторов, именуемая в экологии антропогенными, т. е. происходящими от деятельности человека, приводит к обеднению фитопланктона в одних водоемах, а в других, наоборот, к значительному повышению его продуктивности. Первое происходит в результате сброса в водоем токсических веществ, содержащихся в сточных водах промышленного производства, а второе - при обогащении водоема биогенными веществами (особенно соединениями фосфора) в минеральной или органической форме, содержащимися в больших концентрациях в водах, стекающих с сельскохозяйственных территорий, из городов и мелких селений (бытовые стоки). Биогены содержатся и в сточных водах многих промышленных производств. Второй вид антропогенного влияния - обогащение водоема биогенными веществами - повышает продуктивность не только фитопланктона, но и других водных сообществ, до рыб включительно, и его следовало бы рассматривать как благоприятный с экономической точки зрения процесс. Однако во многих случаях стихийное антропогенное обогащение водоемов первичными питательными веществами происходит в таких масштабах, что водоем как экологическая система оказывается перегруженным биогенами. Следствием этого является чрезмерно бурное развитие фитопланктона ("цветение" воды), при разложении которого выделяется сероводород или другие токсические вещества. Это приводит к гибели животного населения водоема и делает воду непригодной для питья. Нередки случаи и прижизненного выделения водорослями токсических веществ. В пресноводных водоемах чаще всего это наблюдается при массовом развитии сине-зеленых водорослей, в частности видов рода микроцистис (Microcystis). В морских водах отравление воды нередко вызывается массовым развитием мелких жгутиковых. В таких случаях вода иногда окрашивается в красный цвет, отсюда и название этого явления - "красный прилив". Понижение качества воды в результате антропогенной перегрузки водоема биогенными веществами, вызывающей чрезмерное развитие фитопланктона, принято называть явлением антропогенной эвтрофикации водоема. Это одно из печальных проявлений загрязнения окружающей среды человеком. О масштабах этого процесса можно судить по тому, что загрязнение интенсивно развивается в таких огромных пресных водоемах, как озеро Эри, и даже в некоторых морях. Естественное плодородие морских поверхностных вод определяется разными факторами. Пополнение питательными веществами мелко-водных внутренних морей, например Балтийского, Азовского, происходит в основном за счет приноса их речными водами. Поверхностные воды океанов обогащаются питательными веществами в районах выхода глубинных вод на поверхность. Явление это вошло в литературу под названием апвеллинга. Очень интенсивен апвеллинг у перуанского побережья. На базе высокой продукции фитопланктона здесь чрезвычайно высока продукция беспозвоночных, а за счет этого растет численность рыб. Небольшая страна, Перу в 60-х годах по уловам рыбы вышла на первое место в мире. Мощная продуктивность фитопланктона в холодных водах арктических морей и особенно в водах Антарктики определяется также подъемом глубинных вод, обогащенных биогенными веществами. Подобное явление наблюдается и в некоторых других районах океана. Противоположное явление, т. е. обеднение поверхностных вод питательными веществами, тормозящее развитие фитопланктона, наблюдается в районах с устойчивой изоляцией поверхностных вод от глубинных.
|
|||
|