Хелпикс

Главная

Контакты

Случайная статья





Построение графиков 3-х видов в электронной таблице Excel



Построение графиков 3-х видов в электронной таблице Excel

1. Построить несколько графиков параметрически заданной функции при разных значениях конcтант а, b, l. Оси графика – х и y, которые зависят от аргумента t или j.

 

Название кривой Вид графика Параметри­ческие уравнения Диапазон аргумента Кол-во граф. Значения констант
Циклоида x = a×(t - sin t) y = a×(1 - cos t) t Î 0 ¸ 6×p шаг 0,5 a = 1; 1.25;  1.5; 1.75; 2
    Циклоида x = a×(t - l×sin t) y = a×(1 - l×cos t) t Î 0 ¸ 6×p шаг 0,5 a = 2 l = 0.4; 0.7; 1.0;  1.3; 1.6; 2.0
Трохоида x = a×t - b×sin t y = a - b×cos t t Î 0 ¸ 10×p шаг 0,1 a = -1 b = 0.1; 1; 2; 3; 4
Эпитрохоида x = a×cos (l×t) - b×cos (t + l×t) y = a×sin (l×t) - b×sin (t + l×t) t Î 0 ¸ 10×p шаг 0,5 a = 0; 1; 2; 3; 10; 15     b = 2   l = 0.25
Гипотрохоида x = a×cos (l×t) - b×cos (t - l×t) y = a×sin (l×t) - b×sin (t - l×t) t Î 0 ¸ 10×p шаг 0,5 a = 0; 1; 2; 3; 10; 15     b = 2   l = 0.25
Декартов лист x = a×t / (1 + t3) y = a× t2 / (1 + t3) t Î -6 ¸ 6 шаг 0,3 a = 1; 2; 3; 4; 5; 6
Циссоида Диоклеса x = a× t2 / (1 + t2) y = a× t3 / (1 + t2) t Î -6 ¸ 6 шаг 0,2 a = 1; 2; 3; 4; 5; 6
Строфоида x = a× (t2 - 1) / (t2 + 1) y = a×t×(t2 - 1) / (t2 + 1) t Î -6 ¸ 6 шаг 0,2 a = 1; 2; 3; 4; 5; 6
Конхоида Никомеда x = a + b×cos t y = a×tg t + b×sin t t Î 0 ¸ 10 шаг 0,2   a = 2 b = 1; 10; 30; 50; 90
  Улитка Паскаля x = a×cos2 t + b×cos t y = a× cos t ×sin t + b×sin t t Î 0 ¸ 2×p шаг 0,1 a = 1; 2; 3; 4; 5; 6 b = 3
Эпици­клоида x = (a + b)×cos j - a×cos[(a + b)×j/a] y = (a + b)× sin j - a ×sin[(a + b)×j/a] j Î 0 ¸ 2×p Шаг 0,1 a = 1 b = 1; 2; 3; 4; 5; 6
Эпици­клоида x = (a + b)×cos j - l×a×cos[(a + b)×j/a] y = (a + b)× sin j - l×a ×sin[(a + b)×j/a] j Î 0 ¸ 10×p Шаг 0,2 a = 3; b = 4 l = 0.5; 0.7; 1;  1.5; 2; 3
Эпици­клоида x = (a + b)×cos j - l×a×cos[(a + b)×j/a] y = (a + b)× sin j - l×a ×sin[(a + b)×j/a] j Î 0 ¸ 2×p Шаг 0,1 a = 1; b = 4 l = 0.5; 1; 1.5; 2; 4; 6
  Эпици­клоида x = (a + b)×cos j - l×a×cos[(a + b)×j/a] y = (a + b)× sin j - l×a ×sin[(a + b)×j/a] j Î 0 ¸ 2×p Шаг 0,1 a = 7; b = 4 l = 0.5; 1; 2; 4; 6; 8
  Гипоци­клоида x = (b - a)×cos j - a×cos[(b - a)×j/a] y = (b - a)× sin j - a ×sin[(b - a)×j/a] j Î 0 ¸ 2×p Шаг 0,1 a = 1 b = 1.5; 2.5; 3;  3.5; 4; 5
  Гипоци­клоида x = (b - a)×cos j - a×cos[(b - a)×j/a] y = (b - a)× sin j - a ×sin[(b - a)×j/a] j Î 0 ¸ 6×p Шаг 0,5 a = 1.5; 2; 2.5;  3; 3,5; 4 b = 1
Гипоци­клоида x = (b - a)×cos j - l×a×cos[(b - a)×j/a] y = (b - a)× sin j - l×a ×sin[(b - a)×j/a] j Î 0 ¸ 2×p Шаг 0,1   a = 1; b = 4 l = 0.5; 1; 1.5; 2; 3; 4
Гипоци­клоида x = (b - a)×cos j - l×a×cos[(b - a)×j/a] y = (b - a)× sin j - l×a ×sin[(b - a)×j/a] j Î 0 ¸ 10×p Шаг 0,2 a = 5; b = 2 l = 0.2; 0.5; 0.7;  1; 1.5; 2
  Спираль x = a×t×cos t y = b×t×sin t t Î 0 ¸ 10×p Шаг 0,5 a = 2 b = -2; -1; 1; 2; 3; 4
  Гиперболич. спираль x = (a×cos t) / t y = (b ×sin t) / t t Î -6 ¸ 6 Шаг 0,3 a = 2 b = 1; 2; 3; 4; 5
Гиперболич. спираль x = (a×cos t) / t y = (b ×sin t) / t t Î 0.5 ¸ 20 Шаг 0,5 a = 3 b = 1; 2; 3; 4; 5
Астроида x = a×cos3 (t / 4) y = b ×sin3 (t / 4) t Î 0 ¸ 8×p Шаг 0,1 a = 2 b = 1; 2; 3; 4; 5
Астроида x = a×cos3 (t – b) y = a ×sin3 t t Î 0 ¸ 8×p Шаг 0,2 a = 2 b = 0; 1; 2; 3; 4
Астроида x = a×cos3 (b×t ) y = a ×sin3 t t Î 0 ¸ 8×p Шаг 0,1 a = 2 b = 0.5; 1; 1.5; 3; 3.5
Эволь­вента x = a×cos t + a×t ×sin t y = a ×sin t + a×t×cos t t Î -10 ¸10 Шаг 0,5 a = -2; -1; 1; 2
Эволь­вента x = a×cos t + a×t ×sin t y = a ×sin t + a×t×cos t t Î 0 ¸20 Шаг 0,5 a = -2; -1; 1; 2
Эллипс x = a×cos t y = b ×sin t t Î 0 ¸ 2×p Шаг 0,5 a = 7 b = 1; 4; 7; 10; 13
Эллипс x = a×cos(c + t) y = b ×sin(c - t) t Î 0 ¸ 2×p Шаг 0,11 a = 3 b = 2 b = 1; 2; 3; 4; 5
           

 

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.