Задача 4. Задача 5. Задача 6. Лабораторная работа 3
Задача 4
- Даны уравнения прямых а1х+b1y=c1, a2x+b2y=c2, a3x+b3y=c3. Выяснить, какие из этих прямых параллельны, а какие - нет.
| - Даны различные действительные числа x, y, z, d. Найти min(max(x, y), max(x, z), max(z, d)).
| - Даны отрезки [a, b] и [c, d] и точка A с координатой х. Определить, принадлежит ли данная точка одному из этих отрезков, обоим или лежит вне их.
| - Определить, существует ли треугольник со сторонами a, b, c, и если существует, то является ли он равносторонним, равнобедренным или общего вида.
| - Известно, что из четырех чисел a1, a2, a3, a4 одно отлично от трех других, равных между собой. Присвоить номер этого числа переменной n
| - Даны уравнения прямых а1х+b1y=c1, a2x+b2y=c2, a3x+b3y=c3. Выяснить, какие из этих прямых перпендикулярны, а какие - нет.
| - Длины сторон треугольника равны a, b, c. Если треугольник равносторонний, то найти его площадь. Если треугольник равнобедренный, то найти периметр и угол между равными сторонами.
| - Решить биквадратное уравнениеax4 + bx2 + c = 0.
| - Проверьте, можно ли построить треугольник из отрезков с длинами a, b, c и, если можно, то какой – остроугольный, прямоугольный или тупоугольный.
| - Вершины треугольника имеют координаты (0, 0), (0, a), (b, 0). Определить, лежит ли точка с координатами (x, y) внутри треугольника.
| - Определите, пройдет ли кирпич с рёбрами a, b, c в прямоугольное отверстие со сторонами x и y. Просовывать кирпич в отверстие разрешается только так, чтобы каждое из его рёбер было параллельно или перпендикулярно каждой из сторон отверстия.
| - Значения заданных переменных a, b и c перераспределите таким образом, что a, b, c станут, соответственно, наименьшим, средним и наибольшим значениями.
| - Заданы площади круга и квадрата. Определите, поместится ли квадрат в круге.
| - Проверьте, можно ли построить параллелограмм из отрезков с длинами x, y, v, w.
| - Даны координаты (целые от 1 до 8) двух полей шахматной доски. Определить, может ли конь за один ход перейти с одного из этих полей на другое.
| - Если среди трех целых чисел x, y, z имеется хотя бы одно четное, то найти максимальное число, иначе − минимальное.
| - Определить максимальное четное число из трех введенных.
| - Даны различные действительные числа x, y, z, d. Найти max (min (x, y), min (x, z), min (z, d)).
| - Проверьте, можно ли построить треугольник из отрезков с длинами a, b, c и, если можно, то какой – остроугольный, прямоугольный или тупоугольный.
| - Определить максимальное нечетное число из трех введенных.
|
Задача 5
Распечатать таблицу значений функции F для x, изменяющегося в интервале от x0 до xk с шагом h. Значения x0, xk, h вводятся пользователем.
Задача 6
Для x, изменяющегося в интервале от x0 до xk с шагом h, вычислить значения бесконечной суммы S(x) с точностью e=0.00001 и функции y(x).
Лабораторная работа 3
|