Хелпикс

Главная

Контакты

Случайная статья





Уравнение бегущей волны. Дифракция света. Принцип Гюйгенса-Френеля



Уравнение бегущей волны

Уравнение плоской одномерной синусоидальной волны: (Вместо синуса можно написать косинус.) Это уравнение отличается от уравнения синусоидальных колебаний тем, что колеблющая величина S зависит не только от времени, но и от координаты. Это и понятно: вместо одного маятника мы имеем множество связанных маятников - частиц среды. v - скорость распространения волны, А - амплитуда волны, аргумент синуса - фаза волны, j0 - начальная фаза колебаний в точке х = 0, w - частота (циклическая) волны

Расстояние, на которое распространяется волна за время, равное периоду колебаний, называется ДЛИНОЙ ВОЛНЫ l = nT

ВОЛНОВОЕ ЧИСЛО k: С помощью введенного волнового числа уравнение волны запишется:

33) Дифракция света. Принцип Гюйгенса-Френеля

Дифракция –отклонение от прямолинейного распространения или огибания световой волной препятствий. (1802 Юнг). Строгое решение дифракционных задач может быть, в принципе, найдено, исходя из волнового уравнения и граничных условий. Однако, в такой строгой постановке решение, ввиду сложности, удается получить только в нескольких простейших случаях. В оптике, как правило, используются приближенные методы, опирающиеся на принцип Гюйгенса-Френеля— основной постулат волновой теории, описывающий и объясняющий механизм распространения волн, в частности, световых. Принцип: Каждый элемент волнового фронта можно рассматривать, как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Согласно принципу Гюйгенса, каждую точку фронта волны можно рассматривать как источник вторичных волн.

Френель существенно развил этот принцип.

· Все вторичные источники фронта волны, исходящей из одного источника, когерентны между собой.

· Равные по площади участки волновой поверхности излучают равные интенсивности (мощности).

· Каждый вторичный источник излучает свет преимущественно в направлении внешней нормали к волновой поверхности в этой точке. Амплитуда вторичных волн в направлении, составляющем угол α с нормалью, тем меньше, чем больше угол α, и равна нулю при .

· Для вторичных источников справедлив принцип суперпозиции: излучение одних участков волновой поверхности не влияет на излучение других (если часть волновой поверхности прикрыть непрозрачным экраном, вторичные волны будут излучаться открытыми участками так, как если бы экрана не было).

Используя эти положения, Френель уже мог сделать количественные расчеты дифракционной картины.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.