|
|||
В ТРОПОСФЕРУ17 В ТРОПОСФЕРУ
Спасибо Всевышнему за атмосферу. Она держит нас в тепле. Без нее Земля была бы безжизненным ледяным шаром со средней температурой -50 °C. Кроме того, атмосфера поглощает подлетающие рои космических лучей, заряженные частицы, ультрафиолетовое излучение и тому подобное. В целом газовая толща атмосферы равноценна 4,5 метрам защитной стены из бетона, и, не будь ее, эти невидимые гости из космоса пронзали бы нас, подобно крошечным кинжалам. Даже дождевые капли колотили бы нас до бесчувствия, не замедляй их падения атмосфера. Самое поразительное в отношении атмосферы состоит в том, что ее не так уж много. Она простирается до высоты примерно 190 км, что может казаться довольно порядочным, если смотреть с земной поверхности, но если сжать Землю до размеров обычного настольного глобуса, то высота атмосферы не превысит толщины пары слоев лакового покрытия.[235]
В научных целях атмосфера подразделяется на четыре неравных слоя: тропосферу, стратосферу, мезосферу и ионосферу (теперь часто называемую термосферой). Тропосфера – это тот слой, который так дорог нам. Только он содержит достаточно тепла и кислорода для нашей жизнедеятельности, хотя даже он быстро становится неблагоприятным для жизни по мере подъема вверх. От уровня земли до высшей точки тропосферы (или «вращающейся сферы») около 16 км на экваторе и не более 10–11 км в умеренных широтах, там, где живет большинство из нас. 80 % массы атмосферы, практически вся вода и тем самым практически все погодные явления ограничены этим тонким, как дымка, слоем. Поистине, между вами и пустотой не так уж много места. За тропосферой находится стратосфера. Когда на ваших глазах верхушка грозового облака сплющивается в классическую форму наковальни, вы смотрите на границу между тропосферой и стратосферой. Этот невидимый потолок известен как тропопауза. Ее открыл в 1902 году поднимавшийся на воздушном шаре француз Леон Филипп Тейсеран де Бор. «Пауза» здесь означает не кратковременный перерыв, а полное окончание; она от того же греческого корня, что и в слове «менопауза». Даже там, где высота тропосферы максимальная, тропопауза не так уж далека. Скоростной лифт, вроде тех, что работают в современных небоскребах, легко доставил бы вас к ней минут за двадцать, хотя я настоятельно не рекомендовал бы туда ездить. Такой быстрый подъем без поддержания давления в кабине по меньшей мере привел бы к тяжелым отекам головного мозга и легких, опасному избытку жидкости в тканях тела. Когда открылись бы двери смотровой площадки, все находившиеся в лифте почти наверняка были бы мертвы или при смерти. Даже более размеренный подъем сопровождался бы серьезными неудобствами. Температура на высоте 10 км может достигать минус 57 °C, к тому же вы были бы весьма признательны за лишний глоток кислорода. После того как вы покидаете тропосферу, температура скоро снова повышается примерно до 4 °C, на этот раз благодаря поглощению излучения озоном (тоже открытому де Бором во время своего отважного подъема в 1902 году). Затем, в мезосфере, она резко падает до -90 °C, а потом, в уместно названной, но очень непостоянной термосфере, где температура между днем и ночью может колебаться в пределах 500 °C, взлетает до 1500 °C, хотя надо отметить, что «температура» на такой высоте становится до некоторой степени символическим понятием. В действительности температура – это всего лишь мера быстроты движения молекул. На уровне моря воздух наполнен молекулами так плотно, что отдельная молекула может переместиться на совсем крошечное расстояние – если быть точным, на одну десятую микрона, – а потом сталкивается с другой. Из-за непрерывных столкновений триллионов молекул происходит очень интенсивный теплообмен. Но на высоте термосферы, 80 км и выше, воздух настолько разрежен, что между любыми двумя молекулами будут в сотни тысяч раз большие расстояния, и они сталкиваются очень редко. Так что хотя каждая из молекул очень быстрая, между ними мало взаимодействия и тем самым незначительная теплопередача. Это хорошо для спутников и космических кораблей, потому что при более эффективном теплообмене любой рукотворный предмет, вращающийся на этом уровне, был бы сразу объят пламенем.[236] Но даже при этом космические корабли в верхней атмосфере должны управляться с осторожностью, особенно при возвращении на Землю, как это показала в феврале 2003 года трагедия с космическим челноком «Колумбия». Хотя атмосфера и представляется очень тонкой, если корабль спускается под слишком большим углом – более 6 градусов – или слишком быстро, он столкнется с таким количеством молекул, что их сопротивление приведет к воспламенению.[237] И наоборот, если спускающийся корабль войдет в стратосферу под слишком малым углом, он вполне может отскочить в космос, подобно прыгающему по воде камешку. Но вам нет нужды рисковать, отправляясь на край атмосферы, чтобы лишний раз вспомнить о том, какими отчаянно цепляющимися за землю существами мы являемся. Как известно каждому пожившему в горном городке, ваш организм начинает протестовать при подъеме не так уж на много сотен метров над уровнем моря. Даже опытные альпинисты, обладающие преимуществами, которые дает общефизическая и специальная подготовка, а также баллоны с кислородом, на высоте быстро становятся подвержены тошноте, усталости, обморожениям, потере ориентации, страдают от переохлаждения, мигреней, утраты аппетита и многих других функциональных расстройств. Сотней убедительных способов человеческий организм напоминает своему хозяину, что он не приспособлен действовать так высоко над уровнем моря. «Даже при самой благоприятной обстановке, – писал об условиях на вершине Эвереста альпинист Питер Хабелер,[238] – каждый шаг на этой высоте требует колоссального усилия воли. Ты должен заставлять себя делать любое движение, например что-нибудь взять. Постоянно одолевает свинцовая, смертельная усталость». В своей книге «Другая сторона Эвереста» английский альпинист и кинорежиссер Мэтт Дикинсон рассказывает, как Говард Сомервелл[239] во время экспедиции на Эверест в 1924 году «почувствовал, что задыхается насмерть из-за оторвавшегося и застрявшего в дыхательном горле кусочка собственной плоти». Огромным усилием Сомервеллу удалось откашлять закупоривший горло кусок. Оказалось, что это «просто фрагмент слизистой его собственной гортани». Физические страдания особенно тяжелы начиная с высоты 7500 м – уровня, известного среди альпинистов как Зона Смерти, но многие тяжело переносят уже высоту более 4500 м и даже могут опасно заболеть. Такая чувствительность имеет мало отношения к тренированности. Порой бабули резво скачут по высоченным горкам, тогда как их крепкие отпрыски беспомощно стонут, лежа пластом, пока их не спустят пониже. Считается, что абсолютный предел высоты, на которой еще возможно постоянное пребывание человека, – примерно 5500 м, но даже люди, прошедшие специальную высотную подготовку, могут не переносить подолгу такие высоты. В книге «Жизнь в экстремальных условиях» Фрэнсис Эшкрофт отмечает, что серные рудники в Андах находятся на высоте 5800 м, но горняки предпочитают каждый вечер спускаться на 460 м и на следующий день снова подниматься наверх, вместо того чтобы постоянно жить на той высоте. У коренных обитателей высокогорья за тысячелетия зачастую развиваются непропорционально большие грудная клетка и легкие и почти на треть возрастает концентрация переносящих кислород красных кровяных клеток, хотя существует предел их концентрации, ибо кровь может стать слишком густой, чтобы свободно течь по сосудам. Кроме того, на высоте больше 5500 м даже самые адаптированные женщины из-за нехватки кислорода не могут до конца выносить плод. Когда в 1780-х годах в Европе начались экспериментальные подъемы на воздушных шарах, воздухоплавателей удивило, что с высотой становилось заметно холоднее. Казалось бы, логика подсказывает, что чем ближе к источнику тепла, тем должно быть теплее. Ответ частично состоит в том, что вы, по существу, не приближаетесь к Солнцу. Солнце находится в 150 млн км. Приблизиться к нему на несколько сотен метров – это все равно что, находясь в Огайо, сделать шаг в сторону лесного пожара в Австралии и ожидать, что почувствуешь запах дыма. Ответ снова возвращает нас к проблеме плотности молекул в атмосфере. Солнечные лучи возбуждают атомы. Те при столкновениях выделяют полученную энергию, что и приводит к повышению температуры. Когда в летний день вы чувствуете, как солнышко пригревает спину, на самом деле это дают о себе знать возбужденные атомы. Чем выше вы поднимаетесь, тем меньше остается молекул и тем реже между ними происходят столкновения. Воздух – обманчивая штука. Мы склонны думать, что даже на уровне моря он абсолютно бесплотный и почти невесомый. На самом деле он обладает внушительной массой, и эта масса часто себя проявляет. Океанограф Уайвилль Томсон[240] более века назад писал: «Просыпаясь утром, мы иногда узнаем, что показатель барометра поднялся на дюйм, что за ночь на нас потихоньку взвалили почти полтонны, однако не испытываем неудобства, а скорее встаем бодрыми и веселыми, потому что в более плотной среде организму требуется сравнительно меньше усилий для движения».[241] Ваше тело не оказывается раздавленным лишней половиной тонны по той же причине, что и глубоко под водой: оно в основном состоит из несжимаемых жидкостей, которые давят обратно, уравнивая давление снаружи и изнутри. Но приведите воздух в движение, будь то ураган или даже свежий ветер, и он скоро напомнит вам, что обладает значительной массой. Всего вокруг нас около 5200 млн тн воздуха – по 10 млн тн на каждый квадратный километр планеты – не такая уж незначительная величина. Когда миллионы тонн атмосферы устремляются со скоростью 50–60 км/ч, вряд ли кого удивит, что ломаются сучья и слетает с крыш черепица. Как отмечает Антони Смит,[242] типичный атмосферный фронт может состоять из 750 млн тонн холодного воздуха, прижатых миллиардом тонн более теплого. Стоит ли удивляться, что метеорологические последствия порой захватывают воображение. В мире у нас над головами, безусловно, не наблюдается недостатка энергии. Подсчитано, что одна гроза может заключать в себе количество энергии, эквивалентное количеству электроэнергии, потребляемому всеми Соединенными Штатами в течение четырех дней.[243] В подходящих условиях грозовые облака могут возвышаться на 10–15 км, скорость восходящих и нисходящих токов внутри них превышает 150 км/ч. Часто они расположены рядом, потому пилоты и не хотят летать сквозь них. В ходе этого внутреннего брожения находящиеся в облаке частицы заряжаются электричеством. По не совсем еще понятным причинам более легким частицам свойственно нести положительные заряды и подниматься воздушными потоками в верхние слои. Более тяжелые частицы удерживаются у основания, накапливая отрицательные заряды. Эти отрицательно заряженные частицы неудержимо тянет к положительно заряженной Земле, и остается лишь пожелать удачи всему тому, что окажется у них на пути. Молния летит со скоростью 4 млн км/ч[244] и может нагреть окружающий воздух до весьма бодрящей температуры в 25 тысяч градусов Цельсия, в несколько раз жарче, чем на поверхности Солнца. В любой момент на земном шаре происходит в среднем 1800 гроз – около 40 тыс в день. По всей планете днем и ночью каждую секунду в землю ударяет сотня молний. Небо – довольно оживленное место. Значительная часть наших знаний о том, что происходит там, наверху, получена на удивление недавно. Струйные течения, обычно отмечаемые на высоте 9-11 тысяч метров, способны достигать скорости 300 км/ч и в огромной степени влиять на состояние погоды целых материков, а ведь об их существовании не подозревали, пока летчики не стали залетать в них во время Второй мировой войны. Даже теперь о многих атмосферных явлениях существует весьма приблизительное представление. Время от времени в полеты самолетов вносит оживление вид волнового движения, известного в обиходе как турбулентность при ясном небе. Два десятка таких происшествий в год – достаточно серьезное дело, чтобы о нем сообщить. Эти случаи не связаны ни со строением облаков и ни с чем-либо другим, что можно обнаружить визуально или с помощью радаров. Это просто зоны внезапной турбулентности среди безмятежно спокойного неба. В одном таком случае самолет, летевший в тихую погоду из Сингапура в Сидней над центральной Австралией, вдруг упал на 90 м – достаточно, чтобы не пристегнутых к креслам пассажиров подбросило к потолку. Пострадало двенаддать человек, один серьезно. Никто не знает, что служит причиной таких опасных для целостности корабля воздушных ям. Процесс, в результате которого воздух перемещается в атмосфере, аналогичен тому, что движет внутренним механизмом планеты, это – конвекция. В экваториальных широтах влажный теплый воздух поднимается вверх, пока не встречает препятствие в виде тропопаузы и затем распространяется вширь. Удаляясь от экватора, он остывает и опускается вниз. Достигнув нижней точки, часть воздуха стремится к областям низкого давления и, завершая кругооборот, поворачивает к экватору. На экваторе конвекционный процесс обычно стабилен и погода, как и следует ожидать, солнечная и ясная, но вот в умеренных поясах характер погоды в большей мере определяется сезоном, местонахождением и просто случайными факторами, что приводит к бесконечному противоборству воздушных систем высокого и низкого давления. Системы низкого давления создаются поднимающимся воздухом, который уносит в небо молекулы воды, образуя облака и в конечном счете вызывая дождь. Теплый воздух может содержать больше влаги, чем холодный, потому тропические и летние ливни бывают самыми обильными. Таким образом, областям низкого давления свойственна облачная, дождливая погода, а области высокого давления несут ясные солнечные дни. Когда же обе эти системы встречаются, это часто бывает заметно по облакам. Например, слоистые облака – те самые неприятные скучные, облегающие все небо, – возникают, когда насыщенным влагой восходящим воздушным потокам не хватает сил, чтобы пробиться сквозь находящийся выше слой более плотного воздуха, и они расползаются вширь, как дым по потолку. В самом деле, если вы как-нибудь понаблюдаете за курильщиком, проследите за поднимающейся кверху в неподвижном воздухе струйкой дыма, то хорошо представите, как это происходит. Сначала дым поднимается прямо вверх (это называется ламинарным течением, запомните это слово, если хотите произвести на кого-нибудь впечатление), а затем расстилается широким волнистым слоем. Самый мощный компьютер в мире, самым тщательным образом контролирующий окружающую среду, не сможет точно предсказать, какую форму примут эти завитки дыма, так что можете представить себе трудности, стоящие перед метеорологами, когда они пытаются предсказать такие движения в кружащемся, продуваемом ветром полномасштабном мире. Что мы знаем наверняка, так это то, что, поскольку солнечное тепло распределяется неравномерно, на планете возникает разница в атмосферном давлении. Воздух не может этого терпеть и поэтому мечется из стороны в сторону, пытаясь всюду уравнять положение вещей. Ветер – это попросту способ, которым воздух пытается поддерживать равновесие. Воздух всегда перетекает из областей высокого давления в области низкого давления (как и следует ожидать; представьте что-либо наполненное воздухом – воздушный шар, или пневматический баллон, или самолет с выбитым иллюминатором – и вспомните, как настойчиво сжатый воздух стремится вырваться наружу), и чем больше разница в давлении, тем сильнее ветер. Между прочим, ветер набирает силу заметно быстрее, чем растет его скорость, например, при скорости 300 км/ч он не просто в десять, а в сто раз сильнее ветра скоростью 30 км/ч – и потому значительно разрушительнее. Добавьте к этому эффекту несколько миллионов тонн воздуха, и результат может получиться весьма внушительный. Тропический циклон за двадцать четыре часа способен высвободить столько энергии, сколько потребляет за год богатая страна средних размеров, такая как Англия или Франция. О стремлении атмосферы к равновесию первым высказался Эдмонд Галлей – он поспевал всюду, – а в восемнадцатом веке эту идею последовательно развил его соотечественник Бритон Джордж Хэдли, обнаруживший, что восходящие и нисходящие токи воздуха имеют свойство создавать «ячейки» (с тех пор известные как «ячейки Хэдли»). Будучи юристом по профессии, Хэдли в то же время живо интересовался погодой (в конце концов, он же был англичанином), кроме того, он предположил наличие связи между своими ячейками, вращением Земли и наблюдаемыми отклонениями воздушных потоков, которые порождают пассаты. Однако детали этих процессов объяснил в 1835 году профессор механики Высшей политехнической школы в Париже Гюстав-Гаспар Кориолис, и теперь мы ныне называем это явление эффектом Кориолиса.[245] (Другим достижением Кориолиса в Школе было внедрение водяных охладителей, которые, по-видимому, до сих пор известны там как кориосы.) На экваторе Земля вращается с порядочной скоростью 1675 км/ч, хотя по мере приближения к полюсам скорость значительно падает; например в Лондоне и Париже около тысячи км/ч. Если вдуматься, объяснение самоочевидно. Когда вы находитесь на экваторе, вращающейся Земле приходится за сутки переносить вас на весьма значительное расстояние – около 40 тыс. км, прежде чем вы вернетесь на исходное место, тогда как, стоя у полюса, вам может потребоваться всего лишь несколько метров, чтобы совершить полный оборот; хотя в обоих случаях на возврат в точку отправления потребуется 24 часа. Отсюда следует, что чем ближе к экватору, тем быстрее приходится вращаться. Эффект Кориолиса объясняет, почему все, что движется в воздухе по прямой линии вбок от направления вращения Земли, отклоняется вправо в Северном полушарии и влево в Южном. Все дело в том, что под нами поворачивается Земля. Классический пример: представьте, что вы стоите в центре большой карусели и кидаете мяч кому-нибудь, находящемуся на краю. Когда мяч долетит до края, тот, кому вы его кидали, продвинется вперед, и мяч пролетит позади него. В его глазах это будет выглядеть так, будто мяч отклонился в сторону. Это и есть эффект Кориолиса, и именно он заставляет тропические циклоны крутиться волчком. Сила Кориолиса объясняет, почему при стрельбе из корабельных орудий делается поправка влево или вправо; иначе снаряд, летящий на 25 км, отклонится примерно на 100 м и безобидно плюхнется в море. Принимая во внимание практическую и психологическую важность погоды почти для каждого из нас, удивительно, что метеорология не существовала как наука до самого начала XIX века (правда, сам термин «метеорология» существует с 1626 года, когда его употребил Т. Грейнджер[246] в книге о логике). Проблема отчасти заключалась в том, что для получения удовлетворительных результатов в метеорологии нужны точные измерения температуры, а термометры долгое время было изготовлять труднее, чем можно подумать. Для получения точных показаний требовалось проделать в стеклянной трубке очень ровное отверстие, а это было нелегко. Первым, кто решил эту задачу, был голландский инструментальный мастер Габриель Даниель Фаренгейт. В 1717 году он изготовил точный термометр. Правда, по непонятным причинам он градуировал прибор таким образом, что тот обозначал точку замерзания 32 градусами, а точку кипения 212 градусами.[247] Эта числовая эксцентричность с самого начала создавала известные неудобства, и в 1742 году шведский астроном Андере Цельсий придумал конкурирующую шкалу. Как бы в доказательство того, что изобретатели редко делают все абсолютно правильно, Цельсий принял точку кипения за нуль, а точку замерзания за 100 градусов. Правда, вскоре их поменяли местами. Чаще всего отцом современной метеорологии называют английского фармацевта Люка Хоуарда, получившего известность в начале XIX века. Сегодня о нем главным образом помнят в связи с тем, что в 1803 году он дал названия типам облаков. Хотя Хоуард был активным и уважаемым членом Линнеевского общества и применял принципы Линнея в своей новой системе, в качестве форума для сообщения о своей новой классификации он выбрал менее известное Аскезианское общество. (Вы, возможно, вспомните по одной из предыдущих глав, что члены его предавались необычным удовольствиям от вдыхания закиси азота, так что нам лишь остается надеяться, что там отнеслись к сообщению Хоуарда с незамутненным вниманием, как оно того заслуживало. В этом вопросе его биографы хранят странное молчание.) Хоуард разделил облака на три группы: слоистые для облаков, стелющихся на определенной высоте, кучевые для пушистых облаков и перистые для высоких неплотных образований, обычно предвещающих похолодание. К ним он впоследствии добавил четвертое название – дождевые. Прелесть системы Хоуарда в том, что можно свободно объединять основные компоненты, получая описание проплывающих облаков любых очертаний и размеров – слоисто-кучевых, перисто-слоистых, кучево-дождевых и так далее. Она сразу приобрела огромный успех, и не только в Англии. Система настолько захватила Гете, что он посвятил Хоуарду четыре стихотворения. С годами система Хоуарда значительно пополнилась; настолько, что всеобъемлющий, хотя и мало читаемый «Международный атлас облаков» вырос до двух томов, но интересно, что практически все послехоуардовские типы облаков – например, мамматусы, пилеусы, небулосисы, списсатусы, флоккулы, медиокрисы – никогда не имели смысла для тех, кто не связан с метеорологией, да и в среде метеорологов, как мне говорили, они не слишком много значат. Кстати, в первом, значительно более тонком издании этого атласа, вышедшем в свет в 1896 году, облака подразделялись на десять основных типов, среди которых самые пухлые и мягкие, как подушка, – кучево-дождевые – числились под номером 9*. Видимо, отсюда и пошло английское выражение «быть на девятом облаке». --- * (Если вас когда-нибудь удивляло, до чего изумительно резко очерчены края кучевых облаков, при том, что другие облака гораздо более расплывчаты, объяснение состоит в том, что налицо резко выраженная граница между влажной внутренностью кучевого облака и сухим воздухом снаружи. Любая молекула воды, которая выходит за край облака, тут же уносится сухим наружным воздухом, позволяя облаку сохранить четкий край. Расположенные намного выше перистые облака содержат кристаллики льда, зона между их краем и наружным воздухом не так ясно выражена, поэтому их края более расплывчаты.)
При всей мощи и неистовстве редких грозовых облаков обычное облако вообще-то кроткое и удивительно бесплотное существо. Пушистое летнее кучевое облако шириной несколько сотен метров может содержать не больше 100–150 литров воды – «достаточно, чтобы наполнить ванну», как заметил Джеймс Трефил. Некоторое представление о бесплотности облаков можно получить, побродив в тумане, который в конечном счете есть не более чем облако, которому не хватает желания взлететь. Снова процитируем Трефила: «Пройдя сотню метров сквозь обычный туман, вы соприкоснетесь лишь с половиной кубического дюйма воды[248] – не хватит даже на хороший глоток». Так что облака не являются существенными резервуарами воды. В каждый данный момент над нами проплывает всего лишь около 0,035 % имеющейся на Земле пресной воды. В зависимости от того, куда упадет молекула воды, ее дальнейшая судьба может сложиться по-разному. Если она опустится на плодородную почву, то ее усвоят растения, и не более чем через несколько часов или дней она снова испарится. Но если она найдет путь к грунтовой воде, то может не увидать солнца много лет – тысячи лет, если проникнет по-настоящему глубоко. Когда вы глядите на озеро, то видите скопление молекул, находящихся там около десяти лет. В океане же, как считают, длительность их пребывания исчисляется примерно сотней лет. В целом приблизительно 60 % падающих с дождем молекул воды возвращается в атмосферу в течение одного-двух дней. Испарившись, они проводят на небе около недели – Драри[249] говорит, 12 дней, – прежде чем снова выпасть в виде дождя. Испарение – скоротечный процесс, как вы можете легко оценить по участи лужицы в летний день. Даже такой большой водоем, как Средиземное море, может высохнуть, скажем, за тысячу лет, если его постоянно не пополнять. Такое явление имело место чуть менее 6 млн лет назад и привело к тому, что в науке называют Мессинским кризисом солености. А случилось то, что материковые подвижки перекрыли Гибралтарский пролив. По мере высыхания Средиземного моря его испарения выпадали в виде пресноводного дождя в другие моря, слегка уменьшая их соленость, и в результате они стали замерзать на больших, чем обычно, пространствах. Расширившаяся поверхность льда отражала больше солнечного тепла, тем самым отбрасывая Землю в ледниковый период. Так, по крайней мере, гласит теория. О чем можно говорить с полной определенностью, так это о том, что незначительные изменения в геодинамике могут иметь последствия, которые невозможно вообразить. Одно из таких событий, как мы увидим чуть ниже, возможно, привело к нашему возникновению. Подлинной движущей силой, определяющей состояние поверхности планеты, служат океаны. Метеорологи на деле все больше рассматривают океаны и атмосферу как единую систему, и потому мы должны сейчас уделить им немного внимания. Вода чудесно удерживает и передает тепло, притом в огромных количествах. Гольфстрим ежедневно переносит в Европу количество тепла, эквивалентное мировой добыче угля за десять лет, поэтому в Англии и Ирландии мягкие по сравнению с Канадой и Россией зимы. Но вода также медленно нагревается, поэтому в озерax и плавательных бассейнах вода холодна даже в самые жаркие дни. По этой же причине, судя по нашим ощущениям, времена года наступают с некоторым запозданием по сравнению с их официальным, астрономическим началом. В Северном полушарии весна официально начинается в марте, но в большинстве мест ощущение весны приходит самое раннее в апреле.[250] Океаны не являются единой однородной массой воды. Различия в их температуре, солености, глубине, плотности и так далее очень сильно влияют на перенос тепла, что, в свою очередь, сказывается на климате. Атлантический океан, например, солонее Тихого, что, кстати, неплохо. Чем солонее вода, тем она плотнее, а плотная вода опускается в глубину. Без дополнительного соляного бремени атлантические течения уходили бы в Арктику, обогревая Северный полюс, не лишая благотворного тепла Европу. Основным фактором переноса тепла на Земле является так называемая термосолевая циркуляция, берущая начало в медленных глубинных течениях далеко от поверхности – процессе, впервые открытом в 1797 году ученым и искателем приключений графом фон Румфордом*. --- * (Кажется, этот термин в понимании разных людей означает целый ряд явлений. В ноябре 2002 года Карл Вунш из Массачусетского технологического института опубликовал в журнале Science доклад «Что такое термосолевая циркуляция?», в котором он отметил, что это выражение используется в ведущих журналах, дабы обозначать по крайней мере семь различных явлений (глубоководную циркуляцию, глубже 6000 метров; циркуляцию, порождаемую различиями в плотности; «меридиональную опрокидывающую циркуляцию массы» итак далее) – впрочем, все они имеют отношение к океанической циркуляции и переносу тепла в том предусмотрительно неопределенном и широком смысле, который я здесь имею в виду.)
Происходит следующее: поверхностные воды по мере приближения к Европе становятся плотнее, опускаются на большую глубину и начинают медленный обратный путь в Южное полушарие. Достигнув Антарктики, они подхватываются антарктическим циркумполярным течением и переносятся в Тихий океан. Движение это очень медленное – чтобы воде из Северной Атлантики попасть в середину Тихого океана, может потребоваться полторы тысячи лет, – однако объемы перемещаемого тепла и воды очень значительны и их влияние на климат огромно. (Ответ на вопрос, как вообще можно определить, сколько времени потребуется капле воды, чтобы попасть из одного океана в другой, состоит в том, что ученые могут измерять содержание растворенных в воде соединений вроде хлорфторуглеродов, и на этой основе вычислять, как давно они поступили из воздуха. Сравнивая данные по множеству образцов с различных глубин и из разных мест, можно более или менее точно составить картину перемещения воды.) Термосолевая циркуляция не только переносит тепло, подъемы и опускания водных слоев также способствуют перемешиванию питательных веществ, делая огромные объемы океанов пригодными для обитания рыб и других морских существ. К сожалению, океаническая циркуляция, по-видимому, тоже может оказаться очень чувствительной к изменениям. Согласно результатам компьютерного моделирования даже незначительное снижение содержания соли в океанской воде, например из-за увеличившегося таяния гренландского ледяного щита, может катастрофически нарушить этот кругооборот. Моря делают для нас еще одно весьма благое дело. Они поглощают огромное количество углерода и надежно держат его под замком. Одна из причуд нашей Солнечной системы состоит в том, что Солнце сегодня горит примерно на 25 % ярче по сравнению с тем временем, когда Солнечная система была молодой. Это должно было бы привести к значительному потеплению на Земле. На деле же, как пишет английский геолог Обри Мэннинг,[251] хотя «это колоссальное изменение должно бы стать абсолютно катастрофическим для Земли, оно тем не менее, похоже, едва сказалось на нашем мире». Так что же сохраняет нашу планету устойчиво прохладной? Жизнь. Триллионы и триллионы крошечных морских организмов, о которых большинство из нас никогда не слыхало – фораминиферы, кокколиты, известковые водоросли, – захватывают атмосферный углерод, попадающий к ним в форме углекислоты, растворенной в каплях дождя, и используют его (в сочетании с другими веществами) для строительства своих крошечных раковин. Надежно связывая углерод в раковинах, они удерживают его от испарения обратно в атмосферу, где он опасно накапливался, играя роль парникового газа. В конечном счете все крошечные фораминиферы, кокколиты и т. п. погибают и падают на морское дно, где спрессовываются в известняк. Когда глядишь на такую ставшую привычной природную остопримечательность, как Белые скалы Дувра в Англии, очень интересно поразмышлять над тем, что они почти целиком состоят из погибших крошечных морских организмов, но еще важнее понять, сколько углерода они в совокупности изъяли. 6-дюймовый кусочек дуврского мела будет заключать в себе намного больше тысячи литров углекислоты, от которой иначе нам не ждать бы добра. Всего в земных породах связано примерно в двадцать тысяч раз больше углерода, чем содержится в атмосфере. В конечном счете большая часть этого известняка попадет в вулканы, углерод вернется в атмосферу и выпадет на Землю с дождем, поэтому все это называется долгосрочным углеродным циклом. Этот процесс занимает очень много времени – для обычного атома углерода приблизительно полмиллиона лет,[252] но в отсутствие других возмущений он прекрасно поддерживает постоянство климата. К несчастью, люди беззаботно нарушают этот цикл, выбрасывая в атмосферу излишний углерод, не обращая внимания, готовы фораминиферы усвоить его или нет. По оценкам, с 1850 года мы выбросили в воздух около 100 млрд. тонн лишнего углерода, и эта сумма ежегодно возрастает примерно на 7 млрд. тонн. В целом это не так уж много. Природа – главным образом путем извержения вулканов и гниения растений – ежегодно выбрасывает в атмосферу около 200 млрд тонн углекислого газа, почти в 30 раз больше, чем мы со своими автомобилями и заводами. Но достаточно лишь взглянуть на дымку, висящую над нашими городами, над Большим Каньоном и даже иногда над Белыми скалами Дувра, чтобы увидеть, какие изменения вызывает наша деятельность. По образцам очень старого льда нам известно, что «естественный» уровень содержания углекислого газа в атмосфере, то есть уровень до того, как мы стали увеличивать его в результате промышленной деятельности, составляет 280 частей на миллион. К 1958 году, когда люди в лабораторных халатах стали обращать на него внимание, он возрос до 315 частей на миллион. Сегодня он превышает 360 частей на миллион и растет примерно на четверть процента в год. К концу двадцать первого века он, по прогнозам, возрастет до 560 частей на миллион. Пока что земным океанам и лесам (которые тоже консервируют много углерода) удается спасать нас от самих себя, но, как говорит Питер Кокс[253] из Британского метеорологического управления, «существует критический порог, за которым естественная биосфера перестает ограждать нас от последствий выбросов и выхлопов и, фактически, начинает их усугублять». В связи с этим есть опасение, что на Земле начнется очень быстрое потепление.[254] Не способные приспособиться, многие деревья и другие растения погибнут, высвобождая свои запасы углерода, тем самым усугубляя проблему. Такие явления время от времени имели место в далеком прошлом даже без участия человека. Хорошая новость состоит в том, что даже в подобном положении природа способна творить чудеса. Почти определенно можно утверждать, что углеродный цикл заявит о себе и вернет Землю в состояние равновесия и благоденствия. Когда такое случилось в прошлый раз, это заняло всего 60 тысяч лет.
|
|||
|