Хелпикс

Главная

Контакты

Случайная статья





Варіант 3.



Варіант 3.

 

1. Із заданого набору чисел виберіть два числа так, щоб модуль різниці добутків їх цифр був мінімально можливим. Формат вхідного файлу. Перший рядок вхідного файлу містить ціле N – кількість чисел (2<=N<=10000). Другий рядок містить невід’ємні числа, які не перевищують 106. Всі числа цілі, числа в рядках розділені пропуском. Формат вихідного файлу. Виведіть два числа, модуль різниці добутків цифр яких мінімально можливий. Якщо відповідей декілька то виведіть ту, в якій мінімальне перше число. Якщо і в цьому випадку відповідей декілька – виберіть ту, в якій мінімальне друге число. Приклад.

Number.dat Number.ans
13 4 35 47 38 38 7

 

2. Факторіал додатного числа А – це добуток всіх цілих чисел від 1 до А: А!=1∙2∙…А. Факторіал 0 рівний 1. Задане число N представте у вигляді суми факторіалів. Кожний факторіал можна використовувати один раз. Формат вхідного файлу. Вхідний файл містить одне ціле число N (1<=N<=1018). Формат вихідного файлу. Вихідний файл повинен містити представлення числа N у вигляді суми факторіалів, як показано в прикладі або «Impossible», якщо представлення не існує. Якщо відповідей декілька, виведіть будь-яку. Приклад.

factor.dat factor.ans
3!
0!+1!+2!

 

3. Скласти програму обчислення суми послідовності 1/1!+2/2!+3/3!+...+ n/n!. Обчислити за цією програмою значення сум для n=9, n=37, n=68.

4. Школяр Вася Пупкін виписав на аркуші паперу всі перестановки перших N натуральних чисел і вирішив підрахувати, в скількох виписаних перестановках число інверсій дорівнює K. Напишіть програму, яка допоможе йому це зробити. Примітка. В перестановці a[1], a[2], ..., a[n] перших n натуральних чисел a[k] і a[m] утворюють інверсію, якщо a[k]>a[m] і k<m. Вхідні дані. В єдиному рядку файлу inverse.dat знаходяться числа N, K (1<=N<=18, 0<=K<=1000). Вихідні дані. В файл inverse.sol потрібно вивести кількість перестановок, в яких рівно K інверсій. Приклад вхідних і вихідних даних:

inverse.dat

4 2

inverse.sol

5.

 

5. На площині дано координати чотирьох точок. Три з них утворюють

трикутник. Перевірити, чи є внутрішньою для трикутника четверта точка.


 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.