Хелпикс

Главная

Контакты

Случайная статья





Порядковая (ранговая, ординарная) шкала



1.4. Порядковая (ранговая, ординарная) шкала

Измерение по этой шкале расчленяет всю совокупность измеренных признаков на такие множества, которые связаны между собой отношениями типа «больше — меньше», «выше — ниже», «сильнее — слабее» и т.п. Если в предыдущей шкале было несущественно, в каком порядке располагаются измеренные признаки, то в порядковой (ранговой) шкале все признаки располагаются по рангу — от самого большего (высокого, сильного, умного и т.п.) до самого маленького (низкого, слабого, глупого и т.п.) или наоборот.

Типичный и очень хорошо известный всем пример порядковой шкалы — это школьные оценки: от 5 до 1 балла. Еще пример — судейство в некоторых видах спорта или зрелищных программах (КВН, ДОГШОУ и др.), которые также представляют собой вариант ранжирования.

Еще пример: исследователь изучает группу спортсменов, имеющих следующую градацию званий: мастер спорта, кандидат в мастера и перворазрядник. В этом случае удобно каждую отдельную группу обозначить собственным символом, например, 1, 2 и 3 (или наоборот — 3, 2 и 1). Эти же градации можно обозначить и другими символами, например, буквами А, Б и В. При этом на основе этих символов можно сказать, что представитель первой группы имеет более высокую спортивную квалификацию, чем представители двух других.

В порядковой (ранговой) шкале должно быть не меньше трех классов (групп): например, ответы на опросник: «да», «не знаю», «нет»; или — низкий, средний, высокий; и т.п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку. Именно поэтому эта шкала и называется порядковой, или ранговой, шкалой.

От классов просто перейти к числам, если считать, что низший класс получает ранг (код или цифру) 1, средний — 2, выс­ший — 3 (или наоборот). Чем больше число классов разбиений всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных и проверки стати­стических гипотез.

При кодировании порядковых переменных им можно приписывать любые цифры (коды), но в этих кодах (цифрах) обязательно должен сохраняться порядок, или, иначе говоря, каждая последующая цифра должна быть больше (или меньше) предыдущей.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.