Хелпикс

Главная

Контакты

Случайная статья





Первым законом Кеплера: все планеты обращаются по эллипсам, в одном из фокусов которых находится Солнце.



Первым законом Кеплера: все планеты обращаются по эллипсам, в одном из фокусов которых находится Солнце.

На рисунке точка О — это центр эллипса, а F1 и F2 — его фокусы.

Проходящий через фокусы эллипса отрезок, концы которого лежат на эллипсе, называется его большой осью.

А отрезок, проходящий через центр эллипса перпендикулярно большой оси, называется малой осью эллипса.

Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях, называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются малыми буквами a и b.

Отличие эллипса от окружности характеризуется величиной его эксцентриситета.

  Форма эллипса и степень его сходства с окружностью характеризуется отношением , где — расстояние от центра эллипса до его фокуса (половина межфокусного расстояния), — большая полуось. Величина называется эксцентриситетом эллипса. При , и, следовательно , эллипс превращается в окружность.

      Отметим, что в случае, когда эксцентриситет эллипса равен нулю, фокусы и центр эллипса сливаются в одну точку — эллипс превращается в окружность.

Теперь предположим, что Солнце расположено в фокусе F1. Тогда ближайшая к Солнцу точка орбиты планеты называется перигелием. А наиболее удалённая от Солнца точка, называется афелием.

 

Например, у земной орбиты эксцентриситет равен 0,017, то есть орбита действительно почти круговая. В перигелии наша планета находится в начале января. Расстояние до Солнца составляет около 147 миллионов километров. Афелий Земля проходит в начале июля, а афелийное расстояние составляет чуть более 152 миллионов километров.

Но вернёмся к Кеплеру и построенной им траектории Марса. Изучив расположения полученных точек, он увидел, что скорость Марса по орбите меняется. Но при этом радиус-вектор планеты (то есть линия, соединяющая центр Солнца с центром планеты) за равные промежутки времени описывает равновеликие площади.

Обнаруженная закономерность впоследствии получила название второго закона Кеплера (иногда его называют законом площадей).

Чтобы лучше понять его физический смысл, вспомните своё детство. Наверняка, вам доводилось на детской площадке раскручиваться вокруг столба, ухватившись за него руками. Фактически, планеты обращаются вокруг Солнца аналогичным образом. Чем дальше от Солнца уводит планету эллиптическая орбита, тем медленнее движение, чем ближе к Солнцу — тем быстрее движется планета.

Объяснить данный закон можно на основе закона сохранения энергии. Из физики вам известно, что полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остаётся неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна в каждой точке орбиты планеты. Приближаясь к Солнцу потенциальная энергия планеты уменьшается, вследствии уменьшения расстояния до Солнца. Поэтому её кинетическая энергия должна увеличиваться. А сделать это можно лишь за счёт увеличения скорости.

Таким образом, скорость движения планеты по орбите меняется, принимая максимальное значение в перигелии и минимальное в афелии.

Первый и второй законы были опубликованы Кеплером в 1609 году в книге «Новая астрономия, или Физика небес, изложенная в исследованиях движения планеты Марс...». Хотя реально первый закон Кеплера был открыт в тысяча шестьсот пятом 1605 году, а второй — тысяча шестьсот втором 1602.

Свой третий закон Кеплер сформулировал лишь в 1618 году. Он гласит, что квадраты сидерических периодов обращения двух планет относятся как кубы больших полуосей их орбит:

Вот что писал по этому поводу сам Кеплер: «То, что 16 лет тому назад я решил искать, <...> наконец найдено, и это открытие превзошло все мои самые смелые ожидания...».

И действительно, третий закон заслуживает самой высокой оценки. Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя уже известные их периоды обращения вокруг него. При этом не нужно вычислять расстояния от Солнца до каждой планеты, достаточно измерить это расстояние для одной из них, например, Земли. Кстати, для простоты вычислений, величину большой полуоси́ орбиты Земли приняли равной одной астрономической единице (1 а. е.). Эта единица измерения стала основой для вычисления всех остальных расстояний в Солнечной системе.

Ещё раз обратим ваше внимание на то, что Кеплер открыл свои законы исходя только из собственных наблюдений, и наблюдений Тихо Браге. Если бы вы спросили его, чем обусловлена эллиптичность орбит или равенство площадей секторов, он бы вам не ответил. Это просто следовало из проведённого им анализа. Если бы вы спросили его об орбитальном движении планет в других звёздных системах, он также не нашёл бы ответа на этот вопрос.

Однако гений Кеплера в том и заключался, что он смог увидеть то, во что остальные отказывались верить. А строгое математическое доказательство его законы получили лишь после того, как Ньютоном были открыты закон Всемирного тяготения и закон сохранения момента импульса (известный нам второй закон Ньютона). Но об этом в следующий раз. А сейчас давайте решим с вами одну небольшую задачку. Определите период обращения астероида Россия, если большая полуось его орбиты равна 2,55 а. е.

 

 

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.