|
|||||
БЕСКОНТАКТНАЯ МАШИННО-ЭЛЕКТРОННАЯ ГЕНЕРИРУЮЩАЯ СИСТЕМА НА ОСНОВЕ АСИНХРОННОЙ МАШИНЫ И
Лекция №15 (25.05.20) БЕСКОНТАКТНАЯ МАШИННО-ЭЛЕКТРОННАЯ ГЕНЕРИРУЮЩАЯ СИСТЕМА НА ОСНОВЕ АСИНХРОННОЙ МАШИНЫ И АКТИВНОГО ВЫПРЯМИТЕЛЯ Асинхронные машины (АМ), работающие в генераторном режиме – АГС, в настоящее время получают все возрастающие интерес и применение в автономных системах электроснабжения, ветроэнергетике, малых ГЭС [1÷10]. Этому способствуют не только свойство их самовозбуждения, и такие показатели, как простота конструкции, меньшая масса, бесконтактность и относительно низкая цена [1], но и новые достижения в области силовой электроники и преобразовательной техники. Традиционно, для самовозбуждения АГС применяют батареи конденсаторов (рис.1). Первопричиной его самовозбуждения являются колебания, возникающие в системе с отрицательным сопротивлением на частотах, соответствующих балансу амплитуд и фаз реактивных и активных мощностей основной гармонической составляющей автоколебаний в нелинейной системе [2]. В большинстве случаев для самовозбуждения АГС не требуется внешнее энергетическое воздействие на колебательный контур с такой физической природой. С целью обратить внимание на эту особенность такой режим самовозбуждения в [2] получил название мягкого. АГС редко применяются непосредственно для получения переменного тока, так как при изменении нагрузки генератора в некоторых пределах изменяется частота выходного напряжения из-за изменения скольжения АМ. Поэтому АГС чаще всего применяются или в качестве вентильных генераторов постоянного тока (рис.2а,б), или совместно с преобразователем частоты, выполняемым, например, в виде структуры по рис.2, дополненной инвертором напряжения с выходным фильтром [6]. Учитывая возможную многовариантность реализации таких генерирующих структур с целью их обобщения и разграничения, АГС первого типа целесообразно обозначать как машинно-электронные генерирующие системы первого типа – МЭГС-1, а АГС второго типа – как МЭГС-2. Применение автономных АГС требует решения проблемы стабилизации выходного напряжения, которое изменяется с изменением нагрузки и частоты вращения вала. Для ее решения применяют различные схемы регулирования емкости системы возбуждения, например, переключаемые батареи конденсаторов, конденсаторы переменной емкости (вариконды), компаундное включение конденсаторов. Используются также схемы возбуждения с тиристорно-конденсаторными и тиристорно-реакторными группами. Перспективным для возбуждения АМ является использование активных выпрямителей – АВ, представляющих собой, по существу, инверторные схемы, которые, как известно, могут работать не только в традиционном инверторном режиме, но и при соответствующем управлении в Рис. 2. Варианты использования АМ в режиме вентильного генератора: а) – с конденсаторным самовозбуждением; б) – с применением трехфазного активного выпрямителя – ТАВ, La, Lb, Lc сопрягающие индуктивности. обращенном режиме – выпрямления, управляемого реактивного сопротивления и в комбинированных режимах [7÷9]. В технической литературе мало уделено внимания рассмотрению физических процессов в МЭГС-1 на базе ТАВ и модельному описанию взаимосвязей между их управляющими воздействиями и теми параметрами, которые при возмущающих воздействиях требуется поддерживать неизменными. Такое положение объясняется достаточной сложностью процессов в таких системах и трудностями их модельного описания в виде, приемлемом для инженерной практики. Это может быть одной из первопричин, сдерживающих более широкое их применение. Решить с приемлемой точностью эту проблему применительно только к ТАВ удалось в работах [7÷10] на основе использования метода основной гармоники. Целью настоящей статьи является некоторое обобщение ранее полученных результатов и изложение некоторых осо Возможны два способа подключения АВ (в данном случае трехфазного АВ – ТАВ) в МЭГС-1: 1) параллельно с нагрузкой – в этом случае схема применяется в режиме управляемого реактивного (емкостного) сопротивления по схеме рис.2а (вместо конденсаторов); 2) последовательно с нагрузкой – здесь схема применяется в комбинированном активно-емкостном режиме и используется одновременно Второй вариант включения преобразователя (АВ) представляется наиболее перспективным, так как для возбуждения АГС, выпрямления и стабилизации напряжения используется одно общее устройство. В такой схеме через ТАВ проходит полная мощность АМ, что обуславливает повышенные требования к его энергетической эффективности. АМ и ТАВ являются явно выраженными нелинейными системами, и исследование совместной их работы в составе МЭГС-1 аналитическими методами весьма трудоемко и мало эффективно. Данная задача решена здесь на основе использования имитационного компьютерного моделирования (ИКМ). Для контроля адекватности результатов исследования и создания предпосылок к практической реализации МЭГС-1 было проведено исследование физических свойств ее двух силовых звеньев АМ и ТАВ порознь, а затем при совместной их работе. На этой основе получено информационно-методическое обеспечение, необходимое для практической реализации такой АГС. В [6÷9] найдены необходимые параметрические взаимосвязи между исходными, задаваемыми параметрами – Ud0, Pd0, параметрами АМ, ТАВ и параметрами управления (θ и μ – угол нагрузки и глубина модуляции – параметры регулирования противо-ЭДС ТАВ). В частности, в [7, 8] показано, что фазовый угол θ между алгоритмами переключения ключей ТАВ и напряжением АМ долженен определяться следующим образом: где – амплитуда активной составляющей первой гармоники потребляемого от АМ тока; φ1(1) – угол между основными гармониками фазовых напряжения U1m и тока I1(1)m АМ; I1(1)am – активная составляющая этого тока; ω1 – частота напряжения АМ, L – индуктивность сопрягающего дросселя индуктивности ТАВ – рис.2б. На первом этапе исследования на основе ИКМ процессов в ТАВ в варианте питания его от сети переменного тока получены осциллограммы его работы (рис.3) и регулировочные характеристики (рис.4), которые подтвердили правильность проектного замысла и найденных взаимосвязей, необходимых для проектирования. Выводы 1. Представлены результаты исследования перспективного варианта машинно-электронной генерирующей системы 1-го типа МЭГС-1 (с выходом постоянного тока), выполненной в виде бесконтактного трехфазного асинхронного генератора (АМ) с самовозбуждением (АГС) и трехфазного активного выпрямителя (ТАВ). ТАВ выполняет две функции: функцию управляемого компенсатора реактивной мощности и управляемого малоискажающего выпрямителя. 2. Сформирована имитационная компьютерная модель МЭГС-1 и на её основе получено информационно-методического обеспечение, создающее необходимые предпосылки для проектирования такого типа МЭГС-1 и практической её реализации. 3. Физическая непротиворечивость полученных на основе ИКМ результатов исследования (и их адекватность проектному замыслу) подтверждены методикой двухэтапного исследования звеньев системы – вначале порознь, а затем совместно с контролем результатов на каждом этапе по критерию энергетического баланса [10, 11]. Литература 1. Торопцев Н.Д. Асинхронные генераторы автономных систем. – М.: Знак, 1997. 2. Нетушил А.В. К расчету режима самовозбуждения автономного асинхронного генератора // Электричество №4, 1978 г. – С.52-54. 3. Bhim Singh, S.S. Murthy, Sushma Gupta. STATCOM-Based Voltage Regulator for Self-Excited Induction Generator Feeding Nonlinear Loads // IEEE trans. on Ind. Electronics, vol. 53, no. 5, oct. 2006, p. 1437-1451. 4. B. Venkatesa Perumal, J.K. Chatterjee. Analysis of a Self Excited Induction Generator with STATCOM/Battery Energy Storage System // Power India Conference. IEEE, 2006. 5. A. Sikorski, A. Kuźma. Cooperation of induction squirrel-cage generator with grid connected AC/DC/AC converter // Bulletin of the Polish Academy of sciences. Technical sciences. Vol. 57, No. 4, 2009, p. 317-322. 6. Виноградов А.Б., Изосимов Д.Б., Флоренцев С.Н., Коротков А.А. Управление станцией автономного электроснабжения в составе транспортного средства. Электричество №9, 2009. – С.49÷55. 7. Горякин Д.В., Мыцык Г.С. Функциональные свойства трехфазной мостовой инверторной схемы // Электричество №5, 2012 г. – М.: Знак. С.23-31. 8. Горякин Д.В., Мыцык Г.С. Вентильный генератор на базе асинхронной машины с управляемым самовозбуждением. Н\т-й сборник «Известия ВА РВСН им. Петра Великого», №251, 2012. – 758с., С.216÷224. 9. Горякин Д.В., Мыцык Г.С. Машинно-электронная генерирующая система для малой энергетики на базе асинхронной машины с самовозбуждением. Х Международная ежегодная конференция «Возобновляемая и малая энергетика 2013». Сборник трудов. – М.: Комитет ВИЭ Рос-СНИО. – С.102÷107. 10. Горякин Д.В. Исследование новых возможностей совершенствования машинно-электронных генерирующих систем для малой энергетики и автономных объектов. Автореферат дис.-и на соиск. уч.ст. к.т.н. – М: НИУ «МЭИ», 2013. – 20 с. 11. Мыцык Г.С. О структурировании процедуры проектирования новой техники и о контроле результатов проектирования на адекватность. Н-т/ журнал «Практическая силовая электроника», №4(52)/2013.– С.12÷16.
|
|||||
|