|
||||
Методы решения тригонометрических уравнений.Стр 1 из 2Следующая ⇒ Методы решения тригонометрических уравнений. Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида ( см. выше ) и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.
1. Алгебраический метод. Этот метод нам хорошо известен из алгебры ( метод замены переменной и подстановки ). 2. Разложение на множители. Этот метод рассмотрим на примерах.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в левой части уравнения: П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 , П р и м е р 3. Решить уравнение: cos 2x – cos 8x + cos 6x = 1. Р е ш е н и е . cos 2x + cos 6x = 1 + cos 8x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 , 1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
|
||||
|