Задача 3.
Примеры решения задач по теме «Определители»
|
Задача 1.
Вычислить определитель
.
Указание
Воспользуйтесь либо правилом треугольников, либо разложением определителя по 2-й строке или 2-му столбцу, содержащим нулевой элемент.
Решение
1-й способ (правило треугольников).
Вычислим определитель 3-го порядка, используя его определение:
Δ = 2·0·(-1) + (-3)·(-4)·2 + 5·1·1 - 2·0·5 -1·(-4)·2 – (-1)·1·(-3) =
= 0 + 24 + 5 – 0 + 8 – 3 = 34.
2-й способ (разложение по строке).
Применим свойство определителя:
.
Для удобства вычисления выберем 2-ю строку, содержащую нулевой элемент (А22 = 0), поскольку при этом нет необходимости находить А22, так как произведение А22 А22 = 0. Итак,
(напомним, что определитель второго порядка, входящий в алгебраическое дополнение Aij, получается вычеркиванием из исходного определителя I-й строки и J-го столбца).
Тогда Δ = А21 А21 + А23 А23 = 1·2 + (-4)(-8) = 34.
Ответ: Δ = 34.
Задача 2.
Используя свойства определителя, вычислить определитель
.
Указание
Вычитая из 2-й и 3-й строк определителя соответствующие элементы 1-й строки, добьемся того, что в 1-м столбце останется только один ненулевой элемент. Далее можно разложить определитель по 1-му столбцу.
Решение
Поскольку все элементы первого столбца равны 1, вычтем из 2-й и 3-й строк определителя соответствующие элементы 1-й строки (при этом величина определителя не изменится – свойство 6):
.
Заметим, что теперь все элементы 2-й строки кратны двум, а элементы 3-й строки кратны трем. По следствию 2.2 соответствующие множители можно вынести за знак определителя:
.
Вычтем из элементов 3-й строки полученного определителя соответствующие элементы 2-й строки:
И разложим определитель по 1-му столбцу:
Ответ: Δ = 6.
Разумеется, можно было вычислять этот определитель непосредственно (например, по правилу треугольников), но использование свойств определителей позволило существенно сократить и упростить численные расчеты.
| |
Задача 3.
Используя свойства определителей, вычислить определитель
.
|