Хелпикс

Главная

Контакты

Случайная статья





ЗАДАНИЯ ДЛЯ ДИСТАНЦИОННОГО ОБУЧЕНИЯ



ЗАДАНИЯ ДЛЯ ДИСТАНЦИОННОГО ОБУЧЕНИЯ

Общепрофессиональный цикл

ОП.01 Основы материаловедения

Группа ШМК – 20.1

Дата   Содержание учебного материала Задания

07.10.2020

 

ОП.01 Основы материаловедения

 

Физические свойства строительных материалов Написать конспект, запомнить основные термины.
Химические и физико-химические свойства материалов Составить кроссворд на 15 слов по теме.
Механические и технологические свойства материалов Написать конспект, запомнить основные термины.

09.10.2020

Упругость, пластичность и вязкость материалов. Выучить Законы.
Долговечность материалов. Написать реферат по теме

07.10.2020

Тема урока: Физические свойства строительных материалов

Строительные материалы обладают комплексом физических свойств.

К физическим относятся свойства, выражающие способность материалов реагировать на воздействия физических факторов— гравитационных, т. е. основанных на законе земного притяжения, тепловых, водной среды, акустических, электрических, излучения и т. п.

Средняя плотность характеризует массу единицы объема материала в естественном состоянии (вместе с порами). Эта важная физическая характеристика определяется путем деления массы образца на его объем. Для точного измерения объема удобнее принимать образцы правильной геометрической формы, хотя имеются несложные приемы измерения объема образцов и неправильной формы. При влажных образцах отмечается величина влажности, при которой определялась средняя плотность.

Среднюю плотность рыхлых материалов, например песка, щебня, гравия, называют насыпной плотностью. В ее величине отражается влияние не только пор в каждом зерне или куске, но и межзерновых пустот в рыхлонасыпанном объеме материала.

Истинная плотность — масса единицы объема однородного материала в абсолютно плотном состоянии, т. е. без учета пор, трещин или других полостей, присущих материалу в его обычном состоянии.

Пористость — степень заполнения объема материала порами. Если требуется выяснить, являются ли поры замкнутыми или сквозными, как распределены они в объеме материала по своим размерам, какое имеется реальное соотношение пор разных диаметров, тогда производят дополнительные исследования с применением специальных методов: ртутной порометрии, сорбционного, капиллярного всасывания и др.

Величина пористости и размер пор в значительной мере влияют на прочность материала. При одном и том же веществе строительный материал тем слабее сопротивляется механическим силам, усилиям другого происхождения (тепловым, усадочным и т. п.), чем больше и крупнее поры в его объеме. Для некоторых разновидностей материалов существуют ярко выраженные пропорциональные зависимости: чем меньше средняя плотность (больше пористость), тем меньше прочность материала. От пористости зависят и другие качественные характеристики материала, например способность проводить теплоту и звук, поглощать воду.

От пор отличаются пустоты. Они значительно крупнее пор и всегда отчетливо видны, располагаясь между зернами насыпного материала. Поры обычно заполнены воздухом или водой, тогда как вода в пустотах не задерживается, особенно в широкополостных пустотах. При воздействии статических или циклических тепловых факторов материал характеризуется теплопроводностью, теплоемкостью, температуроустойчивостью, огнестойкостью и другими свойствами.

Теплопроводность — способность материала проводить через свою толщу тепловой поток, возникающий под влиянием разности температур на поверхностях, ограничивающих материал. Это свойство характеризуется теплопроводностью, которая показывает количество теплоты, которое проходит через стенку толщиной 1 м и площадью 1 м2 при перепаде температур на противоположных поверхностях в 1°С в течение 1 часа.

Теплоемкость характеризует способность материала аккумулировать теплоту при нагревании, причем с повышением теплоемкости больше может выделяться теплоты при охлаждении материала. Температура в комнате, например, может сохраняться устойчивой более длительный период при повышенной теплоемкости использованных материалов для пола, стен, перегородок и других частей помещения, поглощающих теплоту в период действия отопительной системы.

Огнестойкость характеризует способность строительных материалов выдерживать без разрушения действие высоких температур в течение сравнительно короткого промежутка времени (пожара). В зависимости от степени огнестойкости строительные материалы разделяют на несгораемые, трудносгораемые и сгораемые. Несгораемые материалы в условиях высоких температур не подвержены воспламенению, тлению или обугливанию. При этом некоторые материалы почти не деформируются {кирпич, черепица), другие могут сильно деформироваться (сталь) или разрушаться, растрескиваться (природные камни, например гранит), особенно при одновременном воздействии воды, применяемой при тушении пожаров. Трудносгораемые материалы под воздействием высоких температур тлеют и обугливаются, но при удалении огня процессы горения, тления или обугливания полностью прекращаются. Среди такого рода материалов находятся фибролит, гидроизол, асфальтовый бетон и др. Сгораемые материалы воспламеняются и горят или тлеют под воздействием огня или высокой температуры, причем горение или тление продолжается также после удаления источника огня. Среди них — древесина, войлок, битумы, смолы и др.

Если источник высокой температуры (выше 1580°С) действует на материал в течение длительного периода времени (соприкосновение с печами, трубами, нагревательными котлами и т. п.), а материал сохраняет необходимые технические свойства и не размягчается, то его относят к огнеупорным. Огнеупорным и являются шамот, динас, магнезитовый кирпич и другие материалы, применяемые для внутренней футеровки (облицовки) металлургических и промышленных печей. Материалы, способные длительное время выдерживать воздействие высоких температур (до 1000°С) без потери или только с частичной потерей прочности, относят к жаростойким, например жаростойкий бетон, керамический кирпич, огнеупорные материалы и др.

Температуростойкость или термостойкость — способность выдерживать чередование (циклы) резких тепловых изменений, нередко с переходом от высоких положительных к низким отрицательным температурам. Это свойство материала зависит от степени его однородности и от способности каждого компонента к тепловым расширениям.

Водопоглощаемость — способность материала впитывать и удерживать воду. Процесс впитывания воды в поры называется водопоглощением и в лабораторных условиях проходит при нормальном атмосферном давлении. Образец постепенно погружают в воду и его полного водопоглощения достигают путем кипячения в воде, если температура 100°С не влияет на состав и структуру материала. Выдерживают образцы в воде в течение определенного срока или до постоянной массы.

Гигроскопичностью называется способность материала поглощать влагу из влажного воздуха или парогазовой смеси. Степень поглощения воды или паров, которые частично конденсируются в порах и капиллярах материала, зависит от относительной влажности и температуры воздуха, парциального давления смеси. С увеличением относительной влажности и со снижением температуры воздуха гигроскопичность повышается.

Влагоотдачей называют способность материала отдавать влагу в окружающую среду. Влага, находящаяся в тонких порах и капилляра, удерживается прочно, особенно адсорбционно-пленочная влага, что способствует ускоренному передвижению поглощаемой воды по сообщающимся порам в материале. Если между влажностью окружающей среды воздуха и влажностью материала устанавливается равновесие, то отсутствуют гигроскопичность и влагоотдача, а состояние принято именовать воздушно-сухим.

Водопроницаемость - способность материала пропускать воду под давлением.

Водостойкость - способность материала сохранять в той или иной мере свои прочностные свойства при увлажнении. Эти материалы можно применять в сырых местах без специальных мер по защите их от увлажнения. На стабильность структуры и свойств материала заметное влияние оказывает попеременное увлажнение и просыхание. Некоторые материалы принято проверять на водостойкость путем циклического насыщения образцов водой и их высушивания.

В жестких условиях находится тот материал, который увлажняется при резких температурных перепадах. Вода, поглощенная материалом, особенно порами в поверхностном слое, замерзает при переходе через нулевую температуру с расширением на 8,5%. Ритмично чередующаяся кристаллизация льда в порах с последующим оттаиванием приводит к дополнительным внутренним напряжениям. Могут возникнуть микро- и макротрещины со снижением прочности, с возможным разрушением структуры. Способность материала, насыщенного водой, выдерживать многократное попеременное (циклическое) замораживание и оттаивание без значительных технических повреждений и ухудшения свойств называется морозостойкостью.

 

 

07.10.2020

Тема урока: Химические и физико-химические свойства материалов

Химическая стойкость — свойство материалов противостоять разрушающему действию химических реагентов — кислот, щелочей, растворенных в воде солей и газов.
Она зависит от состава и структуры материалов. Так, мрамор, известняки, цементный камень в строительных растворах и бетонах, в химическом составе которых преобладает оксид кальция (СаО), легко разрушаются кислотами, но стойки к действию щелочей.
Силикатные материалы, содержащие в основном диоксид кремния (ЗЮа), стойки к действию кислот, но взаимодействуют при повышенной и нормальной температуре со щелочами.

Медленное или быстрое изменение структуры материала под влиянием внешней агрессивной среды называют коррозией. Она бывает химическая, электрохимическая, биологическая.

Коррозионная стойкость — свойство материала сопротивляться коррозионному воздействию среды.
Распространенной и благоприятной средой для развития химической коррозии является вода (пресная и морская). Агрессивность воды зависит от степени ее минерализации, жесткости, щелочности или кислотности.

На развитие коррозионных процессов влияют растворенные в воде соли (сульфаты, хлориды и др.) и газы. Химически агрессивной средой является также воздух, содержащий пары оксидов азота, хлора, сероводорода и т. д.

Особым видом коррозии является биокоррозия — разрушение материалов под действием живых организмов - грибов, насекомых, растений, бактерий и микроорганизмов. К коррозии относят также «старение» пластмасс — изменение их химического состава и структуры под воздействием ультрафиолетовых лучей солнца и искусственных источников света, кислорода воздуха и повышенных температур.
Коррозия опасна не столько изменением химического состава, сколько структуры и физико-механических свойств материалов.


Кислоте- и щелочестойкость — свойство материала не разрушаться под действием кислот и щелочей.

Кислоты весьма агрессивны к металлам, штукатурке, бетону, ряду осадочных горных пород, силикатному кирпичу.

Кроме минеральных агрессивны также органические кислоты — уксусная, масляная, молочная.

Агрессивны к бетону и другим материалам растворы сахара, патока, фруктовые соки и т. д. Кислотостойкими материалами являются некоторые природные камни — диабаз, базальт, андезит, гранит, но и они разрушаются плавиковой кислотой. Кислотостойки плотная керамика, стекло и большинство материалов из пластмасс. Из щелочей весьма агрессивны концентрированные растворы едкого кали и каустической соды.

Щелочестойкими должны быть пигменты, применяемые для цветной штукатурки и различных окрасок по бетону, цементным и известковым штукатуркам, содержащим известь — сильную щелочь.

Нещелочестойкие пигменты врастворах и окрасках быстро обесцвечиваются.

Газостойкость — свойство материала не вступать во взаимодействие с газами окружающей среды.

Строительные материалы должны быть стойкими к сероводороду, углекислоте и другим газам.
Пигменты, в состав которых входят свинец и медь, чернеют под влиянием сероводорода. Между тем взаимодействие гидрата оксида кальция, находящегося в бетоне, штукатурке, силикатном кирпиче, с углекислым газом воздуха способствует увеличению прочности этих материалов. 

Важно отметить, что большинство строительных материалов не обладает химической и коррозионной стойкостью. Так, почти все цементы, бетоны и строительные растворы плохо сопротивляются действию кислот; битумы сравнительно быстро разрушаются под действием концентрированных растворов щелочей; древесина не стойка к действию тех и других.
Многие соли, особенно образующие в воде щелочную и кислую среду, достаточно агрессивны. Растворы солей разрушают материалы также из-за кристаллизации в их порах.

 

 

07.10.2020

Тема урока: Механические и технологические свойства материалов

К основными механическим свойствам металлов относятся:

¦ твёрдость,

¦ прочность,

¦ пластичность,

¦ вязкость.

Твердость является одной из важнейших характеристик. Твёрдость - это свойство металла оказывать сопротивление пластической деформации при проникновении в него другого более твердого тела на поверхностные слои материала. Измерение твёрдости имеет широкое применение для контроля качества изделий.

В зависимости от методов испытания различают значение твердости по Бринеллю, Виккерсу, Роквеллу. Твердость по Бринеллю обозначают символом HB (твердостью менее 450 единиц) и HBW (твердостью более 450 единиц). Твердость по Виккерсу обозначают буквами HV. Твердость по Роквеллу обозначают символом HR с указанием шкалы твердости A, B или C.

Под деформацией (рис.1, приложение А) металла понимают изменение формы и размеров тела под действием внешних воздействий или внутренних сил. Деформация в твердых телах может быть упругой и пластической. Упругой называется деформация, полностью исчезающая после прекращения действующих на неё нагрузок, и пластической если она после снятия нагрузок не исчезает.

Прочность - способность металла сопротивляться деформациям и разрушению. Под разрушением понимают процесс развития в металле трещин, приводящий к разделению его на части. Прочность определяют в результате статического испытания на растяжение.

Пластичность - способность металла к пластической деформации (т.е. получению остаточных изменений формы и размеров без нарушения сплошности). Пластичность используют при обработке металлов давлением.

Вязкость - это способность металла поглощать механическую энергию внешних сил за счёт пластической деформации.

Технологические свойства

Под технологическими свойствами понимают способность подвергаться различным видам обработки.

Технологические свойства определяют при технологических пробах, которые дают качественную оценку пригодности металлов к тем или иным способам обработки. Образец, подвергнутый технологической пробе (рис.2, приложение Б), осматривают. Признаком того, что образец выдержал испытание, является отсутствие трещин, надрывов, расслоения или излома.

Из технологических свойств наибольшее значение имеют:

¦ обрабатываемость резанием,

¦ свариваемость,

¦ ковкость,

¦ прокаливаемость

¦ литейные свойства.

Обрабатываемость резанием - комплексное свойство металла, характеризующее способность его подвергаться обработке резанием и определяется по скорости, усилию резания и по чистоте обработки. Испытания по скорости и усилию резания производятся путем сравнения показателей, полученных при обработке данного металла, с показателями обрабатываемости эталонной марки стали (автоматная сталь марки А12). Показатель чистоты обработанной поверхности определяется измерением высоты неровностей, образующихся на поверхности металла после снятия стружки режущим инструментом.

Свариваемость - способность металла давать доброкачественное соединение при сварке, характеризуется отсутствием трещин и других пороков в швах и прилегающих к шву зонах основного металла. Хорошей свариваемостью обладают конструкционные стали; значительно худшую свариваемость имеют чугуны, медные и алюминиевые сплавы, которые требуют специальных технологических условий при сварке.

Ковкость - способность металлов и сплавов без разрушения изменять свою форму при обработке давлением. Многие металлы и сплавы обладают достаточно хорошей ковкостью в нагретом состоянии, а в холодном состоянии - латунь и алюминиевые сплавы; пониженной ковкостью характеризуется бронза.

Прокаливаемость - способность стали воспринимать закалку на определенную глубину от поверхности. Она зависит от присутствия легирующих элементов в составе и размеров зерен структуры.

Литейные свойства металлов и сплавов характеризуются жидкотекучестъю и усадкой.

Жидкотекучесть - способность металла или сплава в расплавленном состоянии заполнять литейную форму. Для повышения жидкотекучести к ним добавляют легирующие компоненты, например, фосфор - в медные сплавы и чугун, кремний - в алюминиевые сплавы.

Усадкой называется уменьшение объема расплавленного металла или сплава при его затвердевании. На степень усадки влияют многие факторы: химический состав расплава, скорость охлаждения и др.

Эксплуатационные свойства

Эксплуатационные свойства определяются в зависимости от условий работы машин и механизмов специальными испытаниями. Одним из важнейших эксплуатационных свойств является износостойкость.

Износостойкость - свойство материала оказывать сопротивление износу, т.е. изменению размеров и формы вследствие разрушения поверхностного слоя изделия при трении. Испытания материалов на износ производят на образцах в лабораторных условиях, а деталей - в условиях реальной эксплуатации.

К эксплуатационным свойствам также относятся хладностойкость, жаропрочность, антифрикционность и другие.

 

09.10.2020

Тема урока: Упругость, пластичность и вязкость материалов.

Реологические свойства материалов (упругость, пластичность и вязкость) описывают характером зависимости напряжения от деформации. Под деформацией понимается изменение формы и (или) объема тела без нарушения его сплошности.

Течение — про­цесс непрерывного роста деформации во времени без увеличения нагрузки. Деформации бывают обратимыми (исчезающими после снятия нагрузки) и необратимыми (остаточными или пластиче­скими).

Обратимыми являются упругие и эластические деформации. Их природа различна. Упругие деформации обусловлены изменением расстояния между атомами, а эластические — изменением конформации макромолекул полимеров. Остаточные деформации в кристаллических телах возникают в результате скольжения дислокаций за счет последовательного перескока ато­мов со своего места на соседнее. Это приводит к необратимому смещению одних частей кристалла по отношению к другим час­тям.

Любую деформацию, независимо от того, происходит она при растяжении, сжатии, изгибе или кручении, можно разложить на две составляющие: изменение объема и изменение формы. При всестороннем равномерном сжатии или растяжении все материа­лы ведут себя одинаково — как упругие тела. Следовательно, по характеру деформации объема тела неразличимы. Изменение же формы в зависимости от нагрузки определяется тремя фундамен­тальными свойствами, присущими всем без исключения матери­алам: упругостью, пластичностью и вязкостью.

Каждое из этих свойств в отдельности описывают законом по­ведения некоторого идеального тела, эквивалентом которого мо­жет служить механическая модель.

Деформация формоизменения — это деформация сдвига у, кото­рая равна отношению смещения двух точек элемента вдоль оси х к расстоянию между ними по оси у.

Закон упругости Гука.Закон упругости Гука — это закон пря­мой пропорциональности между напряжением и деформацией, характерный для идеально упругого тела, моделью которого явля­ется спиральная пружина (рис. 2.9, б, в): х = Gy; G = tga, где С — модуль упругости при сдвиге, равный тангенсу угла наклона гра­фика зависимости х = /(у). Модуль упругости зависит только от свойств данного материала и является одной из его характерис­тик.

Закон пластичности Сен-Венана — Кулона.Деформация идеаль­но пластичного тела отсутствует (у = 0) при напряжениях сдвига меньше предела текучести (х < хт). При достижении предела теку­чести (х = хт) возникает течение материала с той или иной скоро­стью. Скорость деформации реальных тел при х = const зависит от их вязкости. Моделью идеально пластичного тела является элемент трения. Пока сила, сдви­гающая предмет, не превысит силу трения хт, движения не про­исходит. Предел текучести является характеристикой пластичности материала.

Закон вязкости Ньютона.Представим жидкость, находящуюся в зазоре толщиной К между двумя пластинами равной площади А. Пусть верхняя пластина под действием силы движется в направлении оси х со скоростью и. В результате трения пластина увлекает за собой жидкость, которая течет ламинарно (послойно), причем слои жидкости движутся с разной скоростью и(у), зависящей от координаты у. Между слоями действуют силы трения, которые тем больше, чем сильнее различаются скорости слоев. Это различие скоростей характеризуют отношением и/ Y.

Согласно закону Ньютона в случае идеальной (ньютоновской) жидкости напряжение трения между слоями (или равное ему на­пряжение сдвига х - F/A) прямо пропорционально и/ Y. х = пи/ Y. Поскольку и = Х/r, то: и/ Y- Х/t/ Y= у/Г. Таким образом, напря­жение сдвига прямо пропорционально скорости сдвиговой дефор­мации: х = цу/1.

Коэффициент пропорциональности л, называется динамиче­ским коэффициентом, вязкости. Он зависит только от свойств жид­кости и ее температуры. Из закона Ньютона следует, что едини­цей измерения л в системе СИ является паскаль-секунда (Па • с). В системе СГС за единицу вязкости принят пуаз (П) (1 Па • с = = 10 П). Вязкость воды при 20,5 °С равна 1 сП (1 сП = 0,01 П). Для воздуха л ~ 0,02 сП.

Деформация ньютоновской жидкости при х - const прямо про­порциональна времени и не ограничена во времени: у = (х/л)/.

Величина, обратная вязкости (1/л), в случае жидкостей назы­вается текучестью, а в случае высококонцентрированных коагуляционных структур — подвижностью.

Моделью идеально вязкого тела является устройство, состо­ящее из цилиндра с вязкой жидкостью и поршня с отверстия­ми в днище. При перемещении поршня жидкость перетекает через отверстия из одной части цилиндра в другую. Чем меньше вязкость жидкости, тем быстрее она перетекает и тем быстрее движется поршень при данном усилии. График зависимости скорости деформации от приложенного напряжения представляет собой прямую линию, котангенс угла наклона которой равен коэффициенту вязкости: л = ctga; при этом л. = const.

09.10.2020

Тема урока: Долговечность материалов.

Комплексной характеристикой качества материалов является долговечность — способность сопротивляться внешним и внутренним факторам в течение возможно более длительного времени. О долговечности судят по продолжительности изменения до критических пределов прочности, упругости или других свойств.

С этой целью образцы или изделия подвергают в лабораторных или натурных (эксплуатационных) условиях воздействию комплекса механических, физических, химических и других факторов, реально воздействующих на конструкцию. После расчетного периода времени действия комплекса факторов, или определенного цикла испытаний, устанавливают степень изменения первоначальных числовых значений свойств и сравнивают с допустимой величиной их изменения.

О долговечности пока судят по отклонениям в структуре материала, хотя первопричиной изменения свойств обычно служит нарушение микро- или макроструктуры, отклонение общей структуры от оптимальной.

В теории ИСК под долговечностью понимают способность материала сохранять в эксплуатационный период времени на допустимом уровне структурные характеристики (параметры), которые сложились в технологический, т.е. предэксплуатационный период. Независимо от способа оценки долговечности — по изменению свойств или структуры — период долговечности условно можно разделить на три этапа, или временных элемента.

До начала первого этапа имеется еще предэксплуатационный период, который характеризуется в основном набором и формированием структурных элементов и свойств. Он связан с выполнением технологических переделов и поэтому может быть назван как технологический. По сравнению с последующими этапами технологический период непродолжительный, хотя материал, еще не поступивший в эксплуатацию, может уже значительно изменить свою структуру и свойства, особенно при неблагоприятных условиях пребывания его в предэксплуатационное время.

Материал, помещенный в конструкции зданий и сооружений, на первом этапе долговечности характеризуется упрочнением структуры, или улучшением показателей свойств, второй этап — их относительной стабильностью, третий — деструкцией, т. е, медленным или быстрым нарушением структуры вплоть до ее критического уровня и даже полного разрушения, с соответствующим ухудшением показателей качества.

У отдельных материалов в эксплуатационный период тот или иной этап в периоде долговечности может отсутствовать или его продолжительность столь мала, что принимается практически равной нулю. Может, например, полностью отсутствовать временной элемент упрочнения структуры или ее стабильного состояния. Что же касается этапа деструкции, то он почти неизбежен, хотя и не всегда наблюдаемый визуально. Гораздо реже деструкция протекает с огромной интенсивностью, когда временной элемент становится практически равным нулю.

 Задача заключается в том, чтобы всемерно увеличивать долговечность, т. е. продолжительность каждого из трех взаимосвязанных временных элементов, особенно этапов упрочнения и стабильности структуры, добиваясь вместе с тем эффективного торможения деструкционных процессов. Сущность упрочнения структуры на первом этапе долговечности заключается в том, что под влиянием внешней среды, нагрузок, инверсий фаз и т. п. в эксплуатационный период в материале, особенно в его вяжущей части, а также в контактных зонах возникают и со временем укрупняются новые (вторичные) структурные центры.

 Совместно с теми, которые возникли на ранней стадии формирования структуры (первичными), они участвуют в дополнительном процессе уплотнения структуры, с увеличением концентрации той части твердой фазы, которая является основным носителем эффекта упрочнения. В результате не только наблюдается упрочнение структуры и прочности материала по отношению к механическим нагрузкам, но и улучшение некоторых других его свойств, в том числе свойств вяжущей части.

Примером упрочнения структуры в эксплуатационный период может служить цементный бетон и его вяжущая (матричная) часть в виде цементного камня при контакте с щавелевой кислотой. Последняя, проникая в поры, образует малорастворимые соли и плотные продукты с очень низкой диффузионной проницаемостью. Особенно часто эффект упрочнения наблюдается в связи с доуплотнением под нагрузкой новообразованиями при соединении углекислого газа с известью в материале, перехода аморфного вещества в кристаллическое и т. п.

Однако упрочнение структуры в эксплуатационный период составляет только тогда положительный эффект в долговечности материала, если оно не является следствием так называемого «старения». Под последним понимается часто наблюдаемое явление охрупчивания конгломератов на основе полимеров за счет протекания химических реакций, или рекристаллизации с увеличением в объеме новообразований.

Старение переводит материал в состояние хрупкого микротрещинообразования и в конечном итоге резкого сокращения долговечности. Второй этап — стабилизация структуры — характеризуется сравнительно неизменной концентрацией структурных элементов в единице объема материала и относительным постоянством показателей свойств. Практически уровень этих показателей имеет колебания за счет местных процессов упрочнения и деструкции, однако в целом сохраняется их сбалансированность на некотором среднем, «стабильном» уровне.

Третий этап долговечности — деструкция — самый типичный процесс эксплуатационного периода. Он может начаться с первого же момента эксплуатации конструкции, но может следовать также за этапами упрочнения и временной стабилизации структуры. Третий этап характеризуется нарушением структуры с возможной потерей ее сплошности, постепенным накоплением разрывов межатомных связей.

Разрывы возникают под влиянием ускорения теплового движения атомов и молекул, развития механических, усадочных, осмотических и иных напряжений. Установлено, что процесс постепенного повреждения структуры сопутствует каждой, даже самой малоупругой деформации.

 Кроме физических в период деструкции протекают химические и физико-химические процессы, которые обычно именуют как коррозионные. В широком смысле коррозия означает разъедание металла или другого материала под влиянием контакта с внешней агрессивной средой, проникания ее в поры и капилляры. Эти процессы коррозии усиливаются при одновременном воздействии физических факторов, если, например, материал находится в напряженном состоянии под влиянием растягивающих или сжимающих усилий или если вместе с агрессивной средой, например жидкой, материал подвержен воздействию низких отрицательных температур с циклическим замерзанием и оттаиванием жидкой среды в порах.

На заключительной стадии деструкция переходит в интенсивный процесс образования опасных микро- и макротрещин, завершается полным или частичным разрушением конгломерата. Определение и изучение долговечности и ее временных элементов производится на разных уровнях структуры — от молекулярной и надмолекулярной до макроскопической, причем всегда целесообразно начинать с

 

 

Основные источники:

1. Отделочные строительные работы. Учебник для НПО, Ивлиев А.А. - М.: ИЦ «Академия», 2013 г. (5-е изд.).

2. Материаловедение для отделочных строительных работ. Учебник для начального профессионального образования / Смирнов В.А. и др./ 5-е изд., стер. - М. ИЦ «Академия», 2013 г.

3. Облицовочные работы. Учебное пособие для УНПО. Черноус ГГ. - М.: ИЦ «Академия», 2012 г.

4. Нормативные документы:

 

1. Санитарно-эпидемиологические правила и нормативы СанПиН 2.2.3.1384-03 «Гигиенические требования к организации строительного производства и строительных работ», «Гигиенические требования к строительным материалам и конструкциям».

2. Строительные ГОСТы и СНиПы

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.