Хелпикс

Главная

Контакты

Случайная статья





Лекция №2. CALS- и PLM-технологии»



Лекция №2

«CALS- и PLM-технологии»

Идеальной основой обеспечения эффективного управления процессами жизненного цикла (ЖЦ) изделия является применение стратегии CALS(Continuous Acquisition and Life Cycle Support – Непрерывное развитие и поддержка жизненного цикла, непрерывная информационная поддержка поставок и жизненного цикла).

CALS-технологии - современный подход к проектированию и производству высокотехнологичной и наукоёмкой продукции, заключающийся в использовании компьютерной техники и современных информационных технологий на всех стадиях жизненного цикла изделия, обеспечивающая единообразные способы управления процессами и взаимодействия всех участников этого цикла: заказчиков продукции, поставщиков/производителей продукции, эксплуатационного и ремонтного персонала, реализованная в соответствии с требованиями системы международных стандартов, регламентирующих правила указанного взаимодействия преимущественно посредством электронного обмена данными.

ИПИ (информационная поддержка процессов жизненного цикла изделий) - русскоязычный аналог понятия CALS.

Применение CALS-технологий позволяет существенно сократить объёмы проектных работ, так как описания многих составных частей оборудования, машин и систем, проектировавшихся ранее, хранятся в унифицированных форматах данных сетевых серверов, доступных любому пользователю технологий CALS. Существенно облегчается решение проблем ремонтопригодности, интеграции продукции в различного рода системы и среды, адаптации к меняющимся условиям эксплуатации, специализации проектных организаций и тому подобное. Предполагается, что успех на рынке сложной технической продукции будет немыслим вне технологий CALS.

Развитие CALS-технологий должно привести к появлению так называемых виртуальных производств, в которых процесс создания спецификаций с информацией для программно управляемого технологического оборудования, достаточной для изготовления изделия, может быть распределен во времени и пространстве между многими организационно-автономными проектными студиями. Среди несомненных достижений CALS-технологий следует отметить лёгкость распространения передовых проектных решений, возможность многократного воспроизведения частей проекта в новых разработках и другое.

Построение открытых распределенных автоматизированных систем для проектирования и управления в промышленности составляет основу современных CALS-технологий. Главная проблема их построения - обеспечение единообразного описания и интерпретации данных, независимо от места и времени их получения в общей системе, имеющей масштабы вплоть до глобальных. Структура проектной, технологической и эксплуатационной документации, языки её представления должны быть стандартизированными. Тогда становится реальной успешная работа над общим проектом разных коллективов, разделённых во времени и пространстве и использующих разные CAD/CAM/CAE-системы. Одна и та же конструкторская документация может быть использована многократно в разных проектах, а одна и та же технологическая документация - адаптирована к разным производственным условиям, что позволяет существенно сократить и удешевить общий цикл проектирования и производства. Кроме того, упрощается эксплуатация систем.

Для обеспечения информационной интеграции CALS использует стандарты IGES и STEP в качестве форматов данных. В CALS входят также стандарты электронного обмена данными, электронной технической документации и руководства для усовершенствования процессов. В последние годы работа по созданию национальных CALS-стандартов проводится в России под эгидой ФСТЭК РФ. С этой целью создан Технический Комитет ТК431 «CALS-технологии», силами которого разработан ряд стандартов серии ГОСТ Р ИСО 10303, являющихся аутентичными переводами соответствующих международных стандартов (STEP).

Несколько фактов применения CALS-технологий зарубежом. Например, в  1985 году Министерство обороны США объявило планы создания глобальной автоматизированной системы электронного описания всех этапов проектирования, производства и эксплуатации продуктов военного назначения. За прошедшие годы CALS-технология получила широкое развитие в оборонной промышленности и военно-технической инфраструктуре Министерства обороны США. По имеющимся данным это позволило ускорить выполнение НИОКР на 30-40%, уменьшить затраты на закупку военной продукции на 30%, сократить сроки закупки ЗИП на 22%, а также в 9 раз сократить время на корректировку проектов.

Управленческие и информационные технологии CALS призваны способствовать решению (с большей эффективностью и с меньшими издержками) ряда конкретных задач

К числу таких задач, в первую очередь, относятся:

1. Накопление, хранение и систематическое обновление данных об изделии, включающих:

· информацию о составе и структуре изделия, то есть о его компонентах и их входимости (иерархической соподчиненности);

· о характеристиках изделия и его компонентов (например, габариты, масса, показатели надежности, тактико-технические характеристики и т.д.);

· ссылки на техническую документацию, описывающую изделие (в частности - в виде электронных чертежей, 3D-моделей и т.д.) и хранящуюся в электронном архиве.

2. Согласование, утверждение и систематическое отслеживание выполнения требований к изделию и его компонентам на всех стадиях ЖЦ (разработка, изготовление, эксплуатация, модернизация).

3. Параллельная разработка конструкции изделия и системы его эксплуатации, технического обслуживания и ремонта (ТОиР), в том числе:

· обеспечение надежности (безотказности, долговечности) изделия как конструктивными, так и эксплуатационными средствами;

· обеспечение ремонтопригодности и эксплуатационной технологичности посредством анализа как вновь создаваемого изделия, так и его прототипов;

· формирование регламентов и технологических операций технического обслуживания, обеспечивающих существенное сокращение длительности этих процедур;

· определение рациональной периодичности планово-профилактических работ (в единицах календарного времени или наработки), оценка продолжительности и стоимости выполнения соответствующих технологических процессов; анализ и реализация возможностей сокращения продолжительности и стоимости техпроцессов;

· определение рациональной номенклатуры и количества запасных частей, расходных материалов и принадлежностей (ЗИП), которые следует поставлять вместе с изделием, приобретать и хранить на складах с тем, чтобы обеспечить требуемую готовность техники при минимальных затратах на приобретение и хранение.

4. Кодификация продукции, в том числе поставляемой для государственных нужд, позволяющая упорядочить поставки и сократить затраты времени удовлетворения заявок на ЗИП.

5. Мониторинг хода эксплуатации, позволяющий накапливать и анализировать фактические данные о надежности, расходовании ресурсов всех видов (трудовых, материальных, финансовых и др.), эффективности применения и так далее, с целью последующего использования этих данных при модернизации существующих и проектировании новых образцов техники.

6. Электронная технология создания эксплуатационной и ремонтной документации на изделие, обеспечивающая:

· создание базы готовых фрагментов (модулей) документации, предназначенных для многократного использования при создании модификаций и исполнений базового изделия, что обеспечивает значительное сокращение затрат;

· возможность с минимальными затратами поддерживать актуальное состояние документации при изменениях конструкции изделия в ходе его модернизации в течение ЖЦ;

· многократное сокращение физических объемов документации при ее издании в электронном виде;

· резкое (на порядки) сокращение затрат времени на поиск нужной информации в процессе ТОиР, а также при возникновении нештатных ситуаций , при издании документации в электронном виде.

7. Стандартизация процессов и технологий управления и информационного взаимодействия всех участников ЖЦ изделия на всех его стадиях, обеспечивающая единообразие действий и понимания данных всеми участниками ЖЦ, а также возможность многократного использования однажды созданных данных, что существенно снижает затраты на информационную поддержку процессов ЖЦ.

 Стратегия CALS обеспечивает создание единого информационного пространства (ЕИП) для всех участников ЖЦ: заказчиков продукции (включая государственные учреждения и ведомства), поставщиков (производителей) продукции, эксплуатационного и ремонтного персонала, реализованная в соответствии с требованиями системы международных стандартов. Это позволяет преодолеть информационный хаос и коммуникационные барьеры между участниками ЖЦ изделия, а также приводит к повышению эффективности управления процессами ЖЦ и улучшению взаимодействия между его участниками. Результатом такого повышения является снижение временных и материальных издержек в течение ЖЦ изделия и повышение степени удовлетворения потребностей заказчика, а это, в свою очередь, неизбежно принесет повышение конкурентоспособности.

Применение компьютерных систем по укрупненным этапам жизненного цикла выглядит следующим образом.

Проектирование изделия:

1. компьютерные системы автоматизации проектирования (CAD-Сomputer Aided Design), которые являются инструментарием конструктора для двумерного, а потом трехмерного параметрического моделирования (AutoCAD, SolidWork, T-FLEX CAD, KOMPAS);

2. компьютерные системы для инженерных расчетов (CAE- Сomputer Aided Engineering),обеспечивающих автоматизацию расчетов по прочности, по тепловым режимам, по виброустойчивости и так далее;

3. системы автоматизированной подготовки производства (CAM - Сomputer Aided Manufacturing)выдают в электронном виде сведения о способах изготовления и контроля изделия и его компонентов в процессе производства, описания маршрутных и операционных технологий, управляющие программы для станков с ЧПУ, а также данные для проектирования приспособлений и так далее (ТехноПро, T-FLEX штампы, T-FLEX пресс-формы, T-FLEX ЧПУ, SurfCAM, T-FLEX Анализ и т.д.).

Производство изделия:

1. системы планирования потребностей в материалах (MRP-системы);

2. системы планирования ресурсов производства (MRPII-системы);

3. системы планирования ресурсов предприятия (ERP-системы).

Эти системы поставляют производственные и эксплуатационные данные об изделии в электронном виде, обеспечивают взаимодействие основных процессов организации: маркетинг и сбыт, планирование и управление производством, планирование материальных запасов, планирование закупок, управление финансами, учет и так далее. В отечественной терминологии они чаще называются АСУП (автоматизированные системы управления предприятием/производством).

Поставка и эксплуатация изделия:

1. системы логистической поддержки изделия, к которым относятся системы автоматизации обслуживания и ремонта изделия на этапе эксплуатации, заказа комплектующих к изделию, поставки изделий и комплектующих, в частности , SCM-системы (Supply Chain Management - управление цепочкой поставок);

2. системы электронной коммерции, к которым относятся отдельные блоки ERP-систем, а также системы для проведения коммерческих операций в электронном виде - системы управления взаимоотношениями с клиентами (CRM - Customer Relationship Management), системы В2В (business-to-business) - взаимодействия предприятий между собой, системы электронной коммерции типов В2С (business-to-customer) - взаимодействие поставщика и покупателя, в том числе INTERNET - магазины;

3. интерактивные электронные технические руководства (ИЭТР) относятся к автоматизированным системам, предоставляющим пользователю эксплуатационную информацию по конкретному изделию, а также возможности по диагностике изделия, поиску и устранению неисправностей, обучению, взаимодействию с поставщиком и тому подобное.

Технологии интеграции данных реализуются с помощью класса автоматизированных систем, называемых системами управления данными об изделии (Product Data Management – PDM- системы). С одной стороны, такие системы выступают в качестве хранилища всех данных об изделии и взаимодействуют с компьютерными системами, создающими или использующими данные об изделии. Данные, таким образом, доступными любому участнику ЖЦ изделия, имеющему соответствующие права доступа. С другой стороны, PDM-системы должны решать задачу повышения эффективности работыотдельного пользователя. В этом случае они должны выступать в качестве рабочей среды пользователя, предоставляя ему нужные данные в нужное время и в нужной форме.

PLM (сокр. от англ. Product Lifecycle Management) - технология управления жизненным циклом изделий. Организационно-техническая система, обеспечивающая управление всей информацией об изделии и связанных с ним процессах на протяжении всего его жизненного цикла, начиная с проектирования и производства до снятия с эксплуатации. При этом в качестве изделий могут рассматриваться различные сложные технические объекты.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.