|
|||
Рис. 2. Схема измерений оптической плотности в денситометре, работающем на пропускание: Л — лампа; z — фотоэлектрические преобразователиРис. 2. Схема измерений оптической плотности в денситометре, работающем на пропускание: Л — лампа; z — фотоэлектрические преобразователи В зависимости от количества света, прошедшего через фотоматериал, фотоэлемент модулирует электрический импульс, который пересчитывается логическим блоком в значение оптической плотности, а также в относительное значение площади растровых элементов: • на диапозитивной фотоформе:
на негативной фотоформе:
где Dp — оптическая плотность растрового элемента; Dc — оптическая плотность участка максимального почернения; D0 — оптическая плотность неэкспонированного участка (вуали). Для установки денситометра на 0 осуществляют замер прозрачного участка подложки фотоматериала. Светофильтры 10 (см. рис. 3) имеют спектральные характеристики, согласованные с характеристиками источников света, которые используются при дальнейшем копировании контролируемой фотоформы.
Рис. 3. Схема денситометра для работы в проходящем свете В допечатных процессах применяются фотопленки трех типов, имеющих максимальную светочувствительность в различных зонах спектра: обычные (несенсибилизированные) — в ультрафиолетовой и синей зонах; ортохроматические — в желтой и зеленой; панхроматические — во всех зонах спектра. Поэтому при измерении фотоформы денситометром используют сверхфильтр, согласованный с типом чувствительности фотослоя, который будет применяться в последующем копировальном процессе. Обычно денситометры для работы в проходящем свете комплектуются набором из трех диафрагм диаметром 1, 2 и 3 мм. Использование диафрагм разного диаметра дает возможность точно измерять оптическую плотность на фототехнических пленках, записанных с различной разрешающей способностью, а следовательно, предназначенных для печатания с разной линиатурой полиграфического растра. Для низкой линиатуры обычно применяется больший диаметр, например 3 мм, а для высокой линиатуры — меньший. Подобный подход обусловлен статистической вероятностью попадания в поле диафрагмы растровых элементов. При измерении текстовых или иных штриховых элементов в большинстве случаев используется щелевая диафрагма. Относительная спектральная чувствительность денситометра на отражение определяется распределением энергии в спектре источника излучения, спектральной чувствительностью фотоприемника, спектральным пропусканием светопоглощающей среды денситометра и светофильтров. В отличие от денситометров, работающих с прозрачными материалами, рассматриваемый тип измеряет коэффициент отражения и пересчитывает его в оптическую плотность. Денситометры, работающие на отражение, так же как и денситометры на пропускание, состоят из оптикомеханической части и измерительного электронного блока. Основные отличия моделей — расположение осветителя и приемника света, использование большего количества светофильтров и применение других алгоритмов при расчете измеряемых величин. Оптикомеханическая часть представляет собой фотометрическую головку, соединенную световодом с узлом светофильтров и обычно расположенную в измерительном блоке. Принцип работы денситометров этого типа идентичен рассмотренному выше, только свет от нормированного источника с определенной цветовой температурой проходит через светофильтры, которые выделяют спектр контролируемой на оттиске краски (например, красный фильтр выделяет голубую составляющую, зеленый — пурпурную, синий — желтую), а затем регистрируется приемником. В результате денситометрических измерений определяются цветоделенные оптические плотности, которые обычно называются зональными плотностями, а на цифровом экране денситометра воспроизводятся значения плотностей измеренных красок. Спектрофотометры. Для объективной количественной характеристики цвета используются методы, основанные на трехцветной теории зрения и позволяющие измерять цвет приборами путем аддитивного синтеза. В основе любых цветовых измерений лежит возможность точного определения цветовых координат. Пространства цветового синтеза RGB и CMYK являются нестандартизованными и аппаратнозависимыми, поэтому было предложено цветовое пространство СIELab. Оно было стандартизовано и используется в современных системах допечатной подготовки и контроля качества. Прибором, обеспечивающим контроль цвета, является спектрофотометр. Главная его задача — расчет цветовых координат и построение спектральной кривой измеряемого объекта. Большинство спектрофотометров для полиграфических процессов имеют возможность получать координаты цвета в международных системах XYZ, CIELab и CIE LCH. Отличие спектрофотометрических измерений от измерений человеческим глазом состоит в том, что на показания прибора не оказывают влияния посторонние факторы, такие как индивидуальные характеристики человеческого глаза, а все условия проведения измерений стандартизованы.
|
|||
|