![]()
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Теорема о движении центра массСтр 1 из 2Следующая ⇒ Задача 2 Теорема о движении центра масс Механическая система состоит из грузов D1 массой m1(кг) и D2 массой т2 (кг) и из прямоугольной вертикальной плиты массой m3 (кг), движущейся вдоль горизонтальных направляющих (рис. 1 – 0). В момент времени tо = 0, когда система находилась в покое, под действием внутренних сил грузы начинают двигаться по желобам, представляющим собой окружности радиусов r и R. При движении грузов угол j1 = ÐA1C1D1 изменяется по закону j1=f1(t), а угол j2 = ÐA2C3D2 – по закону j2 = f2(t). В табл. 2 эти зависимости даны отдельно для рис. 1–5 и 6–0, где j выражено в радианах, t – в секундах. Считая грузы материальными точками и пренебрегая всеми сопротивлениями, определить закон изменения со временем величины, указанной в таблице в столбце «Найти», т. е. х3 = f3(t) и N = f(t). где х3– координата центра С3плиты (зависимость х3 = f3(t) определяет закон движения плиты), N – полная нормальная реакция направляющих.
Данные таблицы 1 выбираются по последней цифре шифра зачетки Таблица 1
Данные таблицы 2 выбираются по последней цифре шифра зачетки Таблица 2
Данные таблицы 3 выбираются по предпоследней цифре шифра зачетки Таблица3
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|