Хелпикс

Главная

Контакты

Случайная статья





История открытия.



1. История открытия.

Череда научных открытий в «великое десятилетие» начала девятнадцатого века заложила предпосылки для овладения термоэлектричеством, безусловно, перспективнейшим направлением энергетики будущего. Научные направления в этой области постоянно развиваются, и российские ученые находятся в центре этих исследований.

История открытия термоэлектрических явлений насчитывает уже более 180 лет. Практическое использование они получили только в середине XX века, то есть спустя 130 лет после открытия и в первую очередь благодаря работам советского академика А.Ф. Иоффе. Начало же положил немецкий ученый Зеебек Томас Иоганн (1770 — 1831). В 1822 году он опубликовал результаты своих опытов в статье "К вопросу о магнитной поляризации некоторых металлов и руд, возникающей в условиях разности температур", опубликованной в докладах Прусской академии наук. Зеебек обнаружил, что при замыкании концов цепи, состоящей из двух разнородных металлических материалов, спаи которых находились при разных температурах, магнитная стрелка, помещенная вблизи этой цепи, поворачивалась так же, как в присутствии магнита. Угол поворота стрелки был связан с величиной разности температур на спаях исследуемой цепи. В физике данное явление известно, как "эффект Зеебека". Однако, несмотря на то, что двумя годами ранее в 1820 году Эрстед Ханс Кристиан (1777—1851), доказал влияние электрического тока на магнитную стрелку, а вслед за этим работами Ампера, Био, Савара, Лапласа и других ученых было детально исследовано взаимодействие электрических токов и магнитных полей, Зеебек категорически отрицал электрическую природу данного явления. Как видно из названия статьи, его объяснение сводилось к намагничиванию материалов под воздействием разности температур. По его гипотезе весь земной шар представлял собой подобие гигантской цепи, в которой разница температур поддерживается полюсами холода и высокотемпературной экваториальной частью планеты. Именно в этом Зеебек усмотрел природу земного магнетизма.

Через 12 лет (1834 г.) после открытия Зеебека был открыт "эффект Пельтье". Этот эффект является обратным "эффекту Зеебека". Открыл это явление французский физик, метеоролог Пельтье Жан Шарль Атаназ (Рис.1). Увлечение физикой было его хобби. Ранее он работал часовщиком фирмы А.Л. Бреге, но благодаря полученному в 1815 году наследству, Пельтье смог посвятить себя экспериментам в области физики и наблюдению за метеорологическими явлениями. Как и Зеебек, Пельтье не смог правильно интерпретировать результаты своего исследования. По его убеждению полученные результаты служили иллюстрацией того, что при пропускании через цепь слабых токов универсальный закон Джоуля – Ленца о выделении тепла протекающим током не работает. Только в 1838 году петербургский академик Ленц Эмилий Христианович (1804—1865) доказал, что "эффект Пельтье" является самостоятельным физическим явлением, заключающимся в выделении и поглощении на спаях цепи добавочного тепла при прохождении постоянного тока. При этом характер процесса (поглощение или выделение) зависит от направления тока. В своём опыте Ленц экспериментировал с каплей воды, помещённой на стыке двух проводников (висмута и сурьмы). При пропускании тока в одном направлении капля воды замерзала, а при изменении направления тока – таяла. Тем самым было установлено, что при прохождении тока через контакт двух проводников в одном направлении тепло выделяется, в другом – поглощается. Двадцать лет спустя Уильям Томсон (впоследствии – лорд Кельвин) дал исчерпывающее объяснение эффектам Зеебека и Пельтье и взаимосвязи между ними. Полученные Томсоном термодинамические соотношения позволили ему предсказать третий термоэлектрический эффект, названный впоследствии его именем [1].

Рис. 1. Пельтье Жан Шарль Атаназ (1785 — 1845)

Данные открытия положили основу развития самостоятельной области техники – термоэнергетики, которая занимается как вопросами прямого преобразования тепловой энергии в электрическую (эффект Зеебека), так и вопросами термоэлектрического охлаждения и нагрева (эффект Пельтье). В начале 19 века немецкий инженер Альтенкирх развил эту теорию и ввел понятия холодильного коэффициента и Z-эффективности, показав, что эффект Пельтье на металлических спаях, ввиду достижимой разницы температур всего в несколько градусов, не пригоден для практического применения. И только спустя несколько десятков лет, прежде всего усилиями академика А. Иоффе и разработанной им теории твердых растворов, были теоретически и практически получены результаты, давшие импульс широкому практическому применению эффекта Пельтье.

2. Теоретическое обоснование.

Эффектом Пельтье называется термоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохождении электрического тока в месте контакта (спая) двух разнородных проводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, направления и силы протекающего электрического тока [2].

В отличие от тепла Джоуля – Ленца, которое пропорционально квадрату силы тока (Q = R·I2·t), тепло Пельтье пропорционально первой степени силы тока и меняет знак при изменении направления последнего. Тепло Пельтье, как показали экспериментальные исследования, можно выразить формулой:

Qп = П · q(1)

где q – заряд прошедший через контакт (q = I · t), П – так называемый коэффициент Пельтье, величина которого зависит от природы контактирующих материалов и от их температуры.

Величина выделяемого тепла Qп и его знак зависят от вида контактирующих веществ, силы тока и времени его прохождения:

dQп = П12· I· dt (2)

Здесь П12 = П1 – П2 – коэффициент Пельтье для данного контакта, связанный с абсолютными коэффициентами Пельтье П1 и П2 контактирующих материалов. При этом считается, что ток идет от первого образца ко второму. При выделении тепла Пельтье имеем: QП > 0, П12 > 0, П1 > П2. При поглощении тепла Пельтье оно считается отрицательным и соответственно: QП < 0, П12 < 0, П1 < П2. Очевидно, что П12 = – П21.

Размерность коэффициента Пельтье:

[П] СИ = Дж / Кл = В.

Вместо тепла Пельтье часто используют физическую величину, определяемую как тепловая энергия, ежесекундно выделяющаяся на контакте единичной площади. Эта величина, получившая название – мощность тепловыделения, определяется формулой:

q · P = П12 · j , (3)

где j = I / S – плотность тока; S – площадь контакта.

Размерность этой величины:

[q · P] СИ = Вт / м2.

Рис. 2. Схема опыта для измерения тепла Пельтье

(Cu – медь, Bi – висмут).

В представленной схеме опыта (Рис. 2) измерения тепла Пельтье при одинаковом сопротивлении проводов R (Cu+Bi), опущенных в калориметры, выделится одно и то же джоулево тепло в каждом калориметре, а именно по Q = R·I2·t. Тепло Пельтье, напротив, в одном калориметре будет положительно, а в другом отрицательно. В соответствии с данной схемой можно измерить тепло Пельтье и вычислить значения коэффициентов Пельтье для разных пар проводников. Коэффициент Пельтье находится в существенной зависимости от температуры. Некоторые значения коэффициента Пельтье для различных пар металлов представлены в таблице 1.

Таблица 1.

Значения коэффициента Пельтье для различных пар металлов

Коэффициент Пельтье, являющийся важной технической характеристикой материалов, как правило, не измеряется, а вычисляется через коэффициент Томсона:

П = a · T , (4)

где П – коэффициент Пельтье, a – коэффициент Томсона, T – абсолютная температура.

Открытие эффекта Пельтье оказало большое влияние на последующее развитие физики, а в дальнейшем и различных областей техники.

Итак, суть открытого эффекта заключается в следующем: при прохождении электрического тока через контакт двух проводников, сделанных из различных материалов, в зависимости от его направления, помимо джоулева тепла выделяется или поглощается дополнительное тепло, которое получило название тепла Пельтье. Степень проявления данного эффекта в значительной мере зависит от материалов выбранных проводников и используемых электрических режимов [3].

Классическая теория объясняет явление Пельтье тем, что электроны, переносимые током из одного метала в другой, ускоряются или замедляются под действием внутренней контактной разности потенциалов между металлами. В первом случае кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. Во втором случае кинетическая энергия электронов уменьшается, и эта убыль энергии пополняется за счет тепловых колебаний атомов второго проводника. В результате происходит охлаждение. Более полная теория учитывает изменение не потенциальной энергии при переносе электрона из одного металла в другой, а изменение полной энергии.

На Рис. 3 и Рис. 4 изображена замкнутая цепь, составленная из двух различных полупроводников ПП1 и ПП2 с контактами А и В.

Рис. 3. Выделение тепла Пельтье (контакт А)

Рис. 4. Поглощение тепла Пельтье (контакт А)

Такую цепь, принято называть термоэлементом, а ее ветви –термоэлектродами. Через цепь течет ток I, созданный внешним источником Е. Рис. 3 иллюстрирует ситуацию, когда на контакте А (ток течет от ПП1 к ПП2) происходит выделение тепла Пельтье Qп (А) > 0, а на контакте В (ток направлен от ПП2 к ПП1) его поглощение – Qп (В) < 0. В результате происходит изменение температур спаев: ТА > ТВ. На Рис. 4 изменение знака источника меняет направление тока на противоположное: от ПП2 к ПП1 на контакте А и от ПП1 к ПП2 на контакте В. Соответственно меняется знак тепла Пельтье и соотношение между температурами контактов: Qп (А) < 0, ТА < ТВ [4].

Эффект Пельтье, как и многие термоэлектрические явления, выражен особенно сильно в цепях, составленных из полупроводников с электронной (n-тип) и дырочной (р-тип) проводимостью. Такие полупроводники называются, соответственно, полупроводниками с n- и р-типом проводимости или просто полупроводниками n- и р-типа. Рассмотрим ситуацию, когда ток в контакте идет от дырочного полупроводника к электронному. При этом электроны и дырки движутся навстречу друг другу и, встретившись, рекомбинируют. В результате рекомбинации освобождается энергия, которая выделяется в виде тепла. Эта ситуация рассмотрена на рис. 5, где изображены энергетические зоны (Еc – зона проводимости, Еv – валентная зона) для примесных полупроводников с дырочной и электронной проводимостью [5].

Рис. 5. Выделение тепла Пельтье на контакте полупроводников р- и n - типа

На рис. 6 (Еc – зона проводимости, Еv – валентная зона) иллюстрируется поглощение тепла Пельтье для случая, когда ток идет от n- к р - полупроводнику.

Рис. 6. Поглощение тепла Пельтье на контакте полупроводников р- и n-типа

Здесь электроны в электронном и дырки в дырочном полупроводниках движутся в противоположные стороны, уходя от границы раздела. Убыль носителей тока в пограничной области восполняется за счет попарного рождения электронов и дырок. На образование таких пар требуется энергия, которая поставляется тепловыми колебаниями атомов решетки. Образующиеся электроны и дырки увлекаются в противоположные стороны электрическим полем. Поэтому пока через контакт идет ток, непрерывно происходит рождение новых пар. В результате в контакте тепло будет поглощаться. Полупроводники p- и n-типа проводимости используются в термоэлектрических холодильниках (Рис. 7).

Рис. 7. Использование полупроводников p- и n-типа в термоэлектрических холодильниках.

3. Технические реализации эффекта.

Объединение большого количества пар полупроводников p- и n-типа позволяет создавать охлаждающие элементы – модули Пельтье сравнительно большой мощности.

Модуль Пельтье (элемент Пельтье) – это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье.

Структура полупроводникового термоэлектрического модуля Пельтье представлена на рис. 8.

Рис. 8. Структура модуля Пельтье.

Модуль Пельтье, представляет собой термоэлектрический холодильник, состоящий из последовательно соединенных полупроводников р- и п-типа, образующих р-n- и n-p-переходы. Каждый из таких переходов имеет тепловой контакт с одним из двух радиаторов. В результате прохождения электрического тока определенной полярности образуется перепад температур между радиаторами модуля Пельтье: один радиатор работает как холодильник, другой радиатор нагревается и служит для отвода тепла. На рис. 9 представлен внешний вид типового модуля Пельтье.

Рис. 9. Внешний вид модуля Пельтье.

Типичный модуль обеспечивает значительный температурный перепад, который составляет несколько десятков градусов. При соответствующем принудительном охлаждении нагревающегося радиатора второй радиатор – холодильник, позволяет достичь отрицательных значений температур. Для увеличения разности температур возможно каскадное включение термоэлектрических модулей Пельтье при обеспечении адекватного их охлаждения. Это позволяет сравнительно простыми средствами получить значительный перепад температур и обеспечить эффективное охлаждение защищаемых элементов. На рис. 10 представлен пример каскадного включения типовых модулей Пельтье.

Рис. 10. Пример каскадного включения модулей Пельтье

Устройства охлаждения на основе модулей Пельтье часто называют активными холодильниками Пельтье или просто кулерами Пельтье (Рис. 11). Использование модулей Пельтье в активных кулерах делает их существенно более эффективными по сравнению со стандартными типами кулеров на основе традиционных радиаторов и вентиляторов. Однако в процессе конструирования и использования кулеров с модулями Пельтье необходимо учитывать ряд специфических особенностей, вытекающих из конструкции модулей, их принципа работы, архитектуры современных аппаратных средств компьютеров и функциональных возможностей системного и прикладного программного обеспечения.

Рис. 11. Внешний вид кулера с модулем Пельтье

Главная характеристика термоэлектрического охлаждающего устройства – это эффективность охлаждения:

Z = a2 / (r · l), (5)

где a – коэффициент термоэдс; r – удельное сопротивление; l – удельная теплопроводность полупроводника.

Параметр Z – функция температуры и концентрации носителей заряда, причем для каждой заданной температуры существует оптимальное значение концентрации, при которой величина Z максимальна. Введение в полупроводник тех или иных примесей – основное доступное средство изменять его показатели (a, r, l) в желательную сторону. Современные термоэлектрические охлаждающие устройства обеспечивают снижение температуры от +20оС до 200оС; их холодопроизводительность, как правило, не более 100 Вт [7].

Модули Пельтье, применяемые в составе средств охлаждения электронных элементов, отличаются сравнительно высокой надежностью, и в отличие от холодильников, созданных по традиционной технологии, не имеют движущихся частей. И, как это отмечалось выше, для увеличения эффективности своей работы они допускают каскадное использование, что позволяют довести температуру корпусов защищаемых электронных элементов до отрицательных значений даже при их значительной мощности рассеяния. Также модуль является обратимым, т.е. при смене полярности постоянного тока горячая и холодная пластины меняются местами.

Однако кроме очевидных преимуществ, модули Пельтье обладает и рядом специфических свойств и характеристик, которые необходимо учитывать при их использовании в составе охлаждающих средств. К важнейшим характеристикам относятся следующие особенности эксплуатации:

Модули Пельтье, выделяющие в процессе своей работы большое количество тепла, требуют наличия в составе кулера соответствующих радиаторов и вентиляторов, способных эффективно отводить избыточное тепло от охлаждающих модулей. Термоэлектрические модули отличаются относительно низким коэффициентом полезного действия (кпд) и, выполняя функции теплового насоса, они сами являются мощными источниками тепла. Использование данных модулей в составе средств охлаждения электронных комплектующих компьютера вызывает значительный рост температуры внутри системного блока, что нередко требует дополнительных мер и средств для снижения температуры внутри корпуса компьютера. В противном случае повышенная температура внутри корпуса создает трудности для работы не только для защищаемых элементов и их систем охлаждения, но и остальным компонентам компьютера. Также модули Пельтье являются сравнительно мощной дополнительной нагрузкой для блока питания. С учетом значения тока потребления модулей Пельтье величина мощности блока питания компьютера должна быть не менее 250 Вт. Все это приводит к целесообразности выбора материнских плат и корпусов конструктива ATX с блоками питания достаточной мощности. Использование данного конструктива облегчает для комплектующих компьютера организацию оптимальных теплового и электрического режимов.

Модуль Пельтье, в случае выхода его из строя, изолирует охлаждаемый элемент от радиатора кулера. Это приводит к очень быстрому нарушению теплового режима защищаемого элемента и скорому выходу его из строя от последующего перегрева.

Низкие температуры, возникающие в процессе работы холодильников Пельтье избыточной мощности, способствуют конденсации влаги из воздуха. Это представляет опасность для электронных компонентов, так как конденсат может вызвать короткие замыкания между элементами. Для исключения данной опасности целесообразно использовать холодильники Пельтье оптимальной мощности. Возникнет конденсация или нет, зависит от нескольких параметров. Важнейшими являются: температура окружающей среды (в данном случае температура воздуха внутри корпуса), температура охлаждаемого объекта и влажность воздуха. Чем теплее воздух внутри корпуса и чем больше влажность, тем вероятнее произойдет конденсация влаги и последующий выход из строя электронных элементов компьютера.

Кроме указанных особенностей, необходимо учитывать и ряд специфических обстоятельств, связанных с использованием термоэлектрических модулей Пельтье в составе кулеров, применяемых для охлаждения высокопроизводительных центральных процессоров мощных компьютеров.

Архитектура современных процессоров (Рис. 12) и некоторые системные программы предусматривают изменение энергопотребления в зависимости от загрузки процессоров. Это позволяет оптимизировать их энергопотребление. В обычных условиях оптимизация работы процессора и его энергопотребления благотворно сказывается как на тепловом режиме самого процессора, так и общем тепловом балансе. Однако следует отметить, что режимы с периодическим изменением энергопотребления могут плохо сочетаться со средствами охлаждения процессоров, использующих модули Пельтье. Это связано с тем, что существующие холодильники Пельтье, как правило, рассчитаны на непрерывную работу.

Рис. 12. Процессор с модулем Пельтье

Некоторые проблемы могут возникнуть и в результате работы ряда встроенных функций, например, тех, которые осуществляют управление вентиляторами кулеров. В частности, режимы управления энергопотреблением процессора в некоторых компьютерных системах предусматривают изменение скорости вращения охлаждающих вентиляторов через встроенные аппаратные средства материнской платы. В обычных условиях это значительно улучшает тепловой режим процессора компьютера. Однако в случае использования простейших холодильников Пельтье уменьшение скорости вращения может привести к ухудшению теплового режима с фатальным результатом для процессора уже вследствие его перегрева работающим модулем Пельтье, который кроме выполнения функций теплового насоса, является мощным источником дополнительного тепла.

Необходимо отметить, что, как и в случае центральных процессоров компьютеров, холодильники Пельтье могут быть хорошей альтернативой традиционным средствам охлаждения видеочипсетов, используемых в составе современных высокопроизводительных видеоадаптеров. Работа таких видеочипсетов сопровождается значительным тепловыделением и обычно не подвержена резким изменениям режимов их функционирования.

Для того чтобы исключить проблемы с режимами изменяемого энергопотребления, вызывающих конденсацию влаги из воздуха и возможное переохлаждение, а в некоторых случаях даже перегрев защищаемых элементов, таких как процессоры компьютеров, следует отказаться от использования подобных режимов и ряда встроенных функций. Однако как альтернативу можно использовать системы охлаждения, предусматривающие интеллектуальные средства управления холодильниками Пельтье. Такие средства могут контролировать не только работу вентиляторов, но и изменять режимы работы самих термоэлектрических модулей, используемых в составе активных кулеров.

Работы в направлении совершенствования систем обеспечения оптимальных температурных режимов электронных элементов ведутся многими исследовательскими лабораториями. И системы охлаждения, предусматривающие использование термоэлектрических модулей Пельтье, считаются чрезвычайно перспективными.

4. Области применения.

Основные направления практического использования эффекта Пельтье в полупроводниках: получение холода для создания термоэлектрических охлаждающих устройств, подогрев для целей отопления, термостатирование, управление процессом кристаллизации в условиях постоянной температуры. Термоэлектрические модули (ТЭМ) применяются в устройствах охлаждения радиоэлектронных компонентов и различных устройствах термостатирования ввиду легкости прецизионного электронного регулирования температуры как для нагрева, так и для охлаждения.

Максимальная холодопроизводительность ТЭМ получается при определенном значении тока, который при заданном значении напряжения питания показывается как Imax. Нестационарный режим питания импульсами тока, в несколько раз превышающими Imax, на некоторое время позволит получить холодопроизводительность, намного превышающую паспортную. Это объясняется тем, что сам эффект Пельтье безынерционен, в отличие от распространения теплоты джоуля и явления теплопроводности, и, в течение нескольких секунд, этим можно воспользоваться. Впрочем, нестационарные режимы широкого применения не получили.

Ввиду обратимости термоэлектрических эффектов, ТЭМ может использоваться и в качестве термоэлектрических генераторов (ТЭГ). Вдали от удобств цивилизации это может быть один из немногих доступных источников электрической энергии, например, для подзарядки аккумуляторов или прямого питания радиоэлектронной аппаратуры или других устройств. Достаточно широко используются устройства, в которых разница температур создается между наружной металлической оболочкой, нагреваемой открытым огнем (костром), и внутренней оболочкой, охлаждаемой водой. «Холодная» сторона будет ограничена температурой кипения воды, поэтому такой ТЭМ должен быть рассчитан на рабочую температуру 500 – 600°К. Следует иметь в виду, что тепловой баланс для ТЭГ качественно отличается от ТЭМ на основе эффекта Пельтье, и этот эффект (вместе с теплотой Джоуля) вносит всего несколько процентов в общий вклад, что требует совершенно других акцентов при конструировании ТЭГ. ТЭГ широко применяются в космической технике, где температура «горячей» стороны поддерживается радиоизотопным источником. Вживляемые в тело человека кардиостимуляторы также снабжены ТЭГ с радиоизотопным источником для создания разности температур.

Также элементы Пельтье часто применяются для охлаждения и термостатирования диодных лазеров, с тем, чтобы стабилизировать длину волны излучения. В приборах, при низкой мощности охлаждения, элементы Пельтье часто используются как вторая или третья ступень охлаждения. Это позволяет достичь температур на 30 — 40 К ниже, чем с помощью обычных компрессионных охладителей.

Заключение

Эффект Пельтье был открыт французом Жаном-Шарлем Пельтье в 1834 году. При проведении одного из экспериментов он пропускал электрический ток через полоску висмута, с подключенными к ней медными проводниками. В ходе эксперимента обнаружил, что одно соединение висмут-медь нагревается, другое – остывает. Сам Пельтье не понимал в полной степени сущность открытого им явления. Истинный смысл явления был позже объяснён в 1838 году Ленцем. В своём опыте Ленц экспериментировал с каплей воды, помещённой на стыке двух проводников (висмута и сурьмы). При пропускании тока в одном направлении капля воды замерзала, а при изменении направления тока – таяла. Тем самым было установлено, что при прохождении тока через контакт двух проводников в одном направлении тепло выделяется, в другом – поглощается. Данное явление было названо эффектом Пельтье.

Эффект Пельтье – этотермоэлектрическое явление, при котором происходит выделение или поглощение тепла при прохожденииэлектрического тока в местеконтакта (спая) двух разнородныхпроводников. Величина выделяемого тепла и его знак зависят от вида контактирующих веществ, направления исилы протекающего электрического тока.

Классическая теория объясняет явление Пельтье тем, что при переносе электронов током из одного металла в другой, они ускоряются или замедляются внутренней контактной разностью потенциалов между металлами. В случае ускорения кинетическая энергия электронов увеличивается, а затем выделяется в виде тепла. В обратном случае кинетическая энергия уменьшается, и энергия пополняется за счёт энергии тепловых колебаний атомов второго проводника, таким образом, он начинает охлаждаться. При более полном рассмотрении учитывается изменение не только потенциальной, но и полной энергии.

На основе эффекта Пельтье созданы модули (элементы) Пельтье. Они состоят из одной или более пар небольших полупроводниковых параллелепипедов, которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n- > p), а снизу противоположные (p- > n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом, электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Многоступенчатые элементы Пельтье применяются для охлаждения приёмников излучения в инфракрасных сенсорах. В настоящее время проводятся эксперименты по встраиванию миниатюрных модулей Пельтье непосредственно в микросхемы процессоров для охлаждения их наиболее критичных структур. Такое решение споcобствует лучшему охлаждению за счет снижения теплового сопротивления и позволяет значительно повысить рабочую частоту и производительность процессоров.Таким образом, открытие эффекта Пельтье оказало большое влияние на последующее развитие физики, а в дальнейшем и различных областей техники.

Список используемой литературы

1. Физическая энциклопедия. – М.: Большая Российская энциклопедия, 1998.– Т.5. – С. 98 – 99, 125.

2. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Учеб. пособ.: Для вузов. В 10. т. Т. VIII. Электродинамика сплошных сред. – 4-е изд., стереот.–М.: Физматлит, 2003. – 656 с.

3. Марипов А. Физические основы электроники. – Б.: Полиграфбумресурсы, 2010. – 252 с.

4. Сивухин С.Д. Общий курс физики. – М.: Наука, 1977. – Т.3. Электричество. – С. 490 – 494.

5. Стильбанс Л.С. Физика полупроводников. – М.: Сов. радио, 1967. – С.75 – 83, 292 – 311.

6. Наркевич, И. И. Физика для ВТУЗов / И. И. Наркевич, Э. И. Волмянский, С. И. Лобко. — Минск: Новое знание, 2004. – 680 с.

7.Иоффе. А. Ф. Полупроводниковые термоэлементы– М.; Л. : Изд-во АН СССР, 1960 . – с.188

 



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.