Хелпикс

Главная

Контакты

Случайная статья





Московский Государственный Технический Университет



Московский Государственный Технический Университет

им. Н.Э. Баумана

Калужский филиал

Кафедра ЭИУ5-КФ

ЛАБОРАТОРНАЯ РАБОТА №1

 

по дисциплине:

Математическая логика и теория алгоритмов

на тему:

 

 

«Алгоритмы сортировки»

 

 

Калуга, 2011


Алгоритмы сортировки

 

1.Сортировка пузырьком(англ. Bubble sort ) — сложность алгоритма: O(n2); для каждой пары индексов производится обмен, если элементы расположены не по порядку.

Алгоритм состоит в повторяющихся проходах по сортируемому массиву. За каждый проход элементы последовательно сравниваются попарно и, если порядок в паре неверный, выполняется перестановка элементов. Проходы по массиву повторяются до тех пор, пока на очередном проходе не окажется, что перестановки больше не нужны, что означает — массив отсортирован. При проходе алгоритма, элемент, стоящий не на своём месте, «всплывает» до нужной позиции как пузырёк в воде, отсюда и название алгоритма.

 

2.Сортировка вставками(Insertion sort) — Сложность алгоритма: O(n2); определяем где текущий элемент должен находиться в упорядоченном списке и вставляем его на позицию.

Сортировка вставками — простой алгоритм сортировки. Хотя этот алгоритм сортировки уступает в эффективности более сложным (таким как быстрая сортировка), у него есть ряд преимуществ:

  • эффективен на небольших наборах данных, на наборах данных до десятков элементов может оказаться лучшим;
  • эффективен на наборах данных, которые уже частично отсортированы;
  • это устойчивый алгоритм сортировки (не меняет порядок элементов, которые уже отсортированы);
  • может сортировать список по мере его получения;
  • не требует временной памяти, даже под стек.

На каждом шаге алгоритма мы выбираем один из элементов входных данных и вставляем его на нужную позицию в уже отсортированном списке, до тех пор пока набор входных данных не будет исчерпан. Метод выбора очередного элемента из исходного массива произволен; может использоваться практически любой алгоритм выбора. Обычно (и с целью получения устойчивого алгоритма сортировки), элементы вставляются по порядку их появления во входном массиве.

 

3.Блочная сортировка(Корзинная сортировка, Bucket sort) — Сложность алгоритма: O(n); требуется O(k) дополнительной памяти и знание о природе сортируемых данных, выходящее за рамки функций "переставить" и "сравнить".

сортируемые элементы распределяются между конечным числом отдельных блоков (карманов, корзин) так, чтобы все элементы в каждом следующем по порядку блоке были всегда больше (или меньше), чем в предыдущем. Каждый блок затем сортируется отдельно, либо рекурсивно тем же методом, либо другим. Затем элементы помещаются обратно в массив. Этот тип сортировки может обладать линейным временем исполнения.

 

4.Сортировка слиянием(Merge sort) — Сложность алгоритма: O(n log n); требуется O(n) дополнительной памяти; выстраиваем первую и вторую половину списка отдельно, а затем — сливаем упорядоченные списки

Упорядочивает списки (или другие структуры данных, доступ к элементам которых можно получать только последовательно, например — потоки) в определённом порядке. Эта сортировка — хороший пример использования принципа «разделяй и властвуй». Сначала задача разбивается на несколько подзадач меньшего размера. Затем эти задачи решаются с помощью рекурсивного вызова или непосредственно, если их размер достаточно мал. Наконец, их решения комбинируются, и получается решение исходной задачи.

 

Для решения задачи сортировки эти три этапа выглядят так:

  • Сортируемый массив разбивается на две части примерно одинакового размера;
  • Каждая из получившихся частей сортируется отдельно, например — тем же самым алгоритмом;
  • Два упорядоченных массива половинного размера соединяются в один.

Рекурсивное разбиение задачи на меньшие происходит до тех пор, пока размер массива не достигнет единицы (любой массив длины 1 можно считать упорядоченным).

 

5.Сортировка с помощью двоичного дерева(англ. Tree sort)— Сложность алгоритма: O(n log n); требуется O(n) дополнительной памяти.

Универсальный алгоритм сортировки, заключающийся в построении двоичного дерева поиска по ключам массива (списка), с последующей сборкой результирующего массива путём обхода узлов построенного дерева в необходимом порядке следования ключей. Данная сортировка является оптимальной при получении данных путём непосредственного чтения с потока (например с файла, сокета или консоли).

 

6.Сортировка выбором(Selection sort) — Сложность алгоритма: O(n2); поиск наименьшего или наибольшего элемента и помещения его в начало или конец упорядоченного списка.

Шаги алгоритма:

  • находим минимальное значение в текущем списке
  • производим обмен этого значения со значением на первой неотсортированной позиции
  • теперь сортируем хвост списка, исключив из рассмотрения уже отсортированные элементы

 

7.Быстрая сортировка(Quicksort) — Сложность алгоритма: O(n log n) — среднее время, O(n2) — худший случай; широко известен как быстрейший из известных для упорядочения больших случайных списков; с разбиением исходного набора данных на две половины так, что любой элемент первой половины упорядочен относительно любого элемента второй половины; затем алгоритм применяется рекурсивно к каждой половине.

Быстрая сортировка использует стратегию «разделяй и властвуй». Шаги алгоритма таковы:

  1. Выбираем в массиве некоторый элемент, который будем называть опорным элементом. С точки зрения корректности алгоритма выбор опорного элемента безразличен. С точки зрения повышения эффективности алгоритма выбираться должна медиана, но без дополнительных сведений о сортируемых данных её обычно невозможно получить. Известные стратегии: выбирать постоянно один и тот же элемент, например, средний или последний по положению; выбирать элемент со случайно выбранным индексом.
  2. Операция разделения массива: реорганизуем массив таким образом, чтобы все элементы, меньшие или равные опорному элементу, оказались слева от него, а все элементы, большие опорного — справа от него. Обычный алгоритм операции:
    1. Два индекса — l и r, приравниваются к минимальному и максимальному индексу разделяемого массива соответственно.
    2. Вычисляется индекс опорного элемента m.
    3. Индекс l последовательно увеличивается до m до тех пор, пока l-й элемент не превысит опорный.
    4. Индекс r последовательно уменьшается до m до тех пор, пока r-й элемент не окажется меньше либо равен опорному.
    5. Если r = l — найдена середина массива — операция разделения закончена, оба индекса указывают на опорный элемент.
    6. Если l < r — найденную пару элементов нужно обменять местами и продолжить операцию разделения с тех значений l и r, которые были достигнуты. Следует учесть, что если какая-либо граница (l или r) дошла до опорного элемента, то при обмене значение m изменяется на r-й или l-й элемент соответственно.
  3. Рекурсивно упорядочиваем подмассивы, лежащие слева и справа от опорного элемента.
  4. Базой рекурсии являются наборы, состоящие из одного или двух элементов. Первый возвращается в исходном виде, во втором, при необходимости, сортировка сводится к перестановке двух элементов. Все такие отрезки уже упорядочены в процессе разделения.

Поскольку в каждой итерации (на каждом следующем уровне рекурсии) длина обрабатываемого отрезка массива уменьшается, по меньшей мере, на единицу, терминальная ветвь рекурсии будет достигнута всегда и обработка гарантированно завершится.



  

© helpiks.su При использовании или копировании материалов прямая ссылка на сайт обязательна.